Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2022/2023
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Autonomous Robotics

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
BE3M33ARO1 Z,ZK 6 2P+2L English
The course cannot be taken simultaneously with:
Autonomous Robotics (BE3M33ARO)
Autonomous Robotics (B3M33ARO)
Autonomous Robotics (B3M33ARO1)
The course is a substitute for:
Autonomous Robotics (BE3M33ARO)
Autonomous Robotics (B3M33ARO)
Autonomous Robotics (B3M33ARO1)
Garant předmětu:
Karel Zimmermann
Lecturer:
Vojtěch Vonásek, Karel Zimmermann
Tutor:
Ruslan Agishev, Bedřich Himmel, Vít Krátký, František Nekovář, Martin Pecka, Robert Pěnička, Karel Zimmermann
Supervisor:
Department of Cybernetics
Synopsis:

The Autonomous robotics course will explain the principles needed to develop algorithms for intelligent mobile robots such as algorithms for:

(1) Mapping and localization (SLAM) sensors calibration (lidar or camera).

(2) Planning the path in the existing map or planning the exploration in a partially unknown map and performing the plan in the world.

IMPORTANT: It is assumed that students of this course have a working knowledge of optimization (Gauss-Newton method, Levenberg Marquardt method, full Newton method), mathematical analysis (gradient, Jacobian, Hessian), linear algebra (least-squares method), probability theory (multivariate gaussian probability), statistics (maximum likelihood and maximum aposteriori estimate), python programming and machine learning algorithms.

Requirements:

It is assumed that students of this course have a working knowledge of optimization (Gauss-Newton method, Levenberg Marquardt method, full Newton method), mathematical analysis (gradient, Jacobian, Hessian, multidimensional Taylor polynomial), linear algebra (least-squares method), probability theory (multivariate gaussian probability), statistics (maximum likelihood and maximum aposteriori estimate), python programming and machine learning algorithms.

Syllabus of lectures:

https://cw.fel.cvut.cz/b212/courses/aro/lectures/start

Syllabus of tutorials:

https://cw.fel.cvut.cz/b212/courses/aro/tutorials/start

Study Objective:
Study materials:

1. Siciliano, Bruno and Sciavicco, Lorenzo and Villani, Luigi and Oriolo, Giuseppe: Robotics, Modelling,

Planning and Control, Springer 2009

2. Fahimi, F.: Autonomous Robots: Modeling, Path Planning, and Control, Springer 2009

Note:
Further information:
https://cw.fel.cvut.cz/wiki/courses/aro
Time-table for winter semester 2022/2023:
Time-table is not available yet
Time-table for summer semester 2022/2023:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
roomKN:E-107
Zimmermann K.
Vonásek V.

11:00–12:30
(lecture parallel1)
Karlovo nám.
Zengerova posluchárna K1
roomKN:E-132
Pecka M.
Agishev R.

14:30–16:00
(lecture parallel1
parallel nr.101)

Karlovo nám.
Laboratoř PC
Tue
Wed
Thu
Fri
The course is a part of the following study plans:
Data valid to 2023-03-26
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet6653706.html