Linear Algebra 2
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
BI-LA2.21 | Z,ZK | 5 | 2P+2C | Czech |
- Course guarantor:
- Karel Klouda
- Lecturer:
- Luděk Kleprlík, Karel Klouda, Jakub Šístek
- Tutor:
- Daniel Dombek, Luděk Kleprlík, Karel Klouda, Jan Legerský, Marta Nollová, Jakub Šístek
- Supervisor:
- Department of Applied Mathematics
- Synopsis:
-
Studenti si v tomto předmětu rozšíří znalosti z předmětu BI-LA1, kde se pracovalo pouze s vektory ve formě n-tic čísel. Zde si zavedeme vektorový prostor v abstraktní obecné formě. Seznámíme se také s pojmem skalární součin a lineární zobrazení, což nám dovolí ukázat souvislost s lineární algebrou, geometrií a počítačovou grafikou. Dalším velkým tématem bude numerická lineární algebra, kde si ukážeme potíže s řešením soustav lineárních rovnic na počítači a možnosti, jak se s tímto problémem vypořádat s důrazem na rozklady matic. Ukážeme si také aplikace lineární algebry v různých oborech.
- Requirements:
-
We assume the students finished course BI-LA1.21.
- Syllabus of lectures:
-
1. Abstract vector spaces, infinite-dimensional vector spaces.
2. Scalar products, vector norm, orthogonality.
3. Scalar products and analytical geometry.
4. [2] Linear maps and their matrices.
6. Affine transformations, homogeneous coordinates, projections and operations in 3D space as linear maps.
7. Introduction to numerical mathematics.
8. Solving systems of linear equations on computers.
9. [2] Matrix factorizations (LU, SVD, QR): computation and applications.
11. [3] Applications of linear algebra: the least-squares method, linear programming, recurrent equations.
- Syllabus of tutorials:
-
1. Abstract vector spaces.
2. Scalar products, vector norm, orthogonality.
3. Analytical geometry.
4. Linear maps.
5. Matrices of linear maps.
6. [2] Affine transformations, homogeneous coordinates, projections and operations in 3D space as linear maps.
8. Systems of linear equations.
9. [2] Matrix factorizations (LU, SVD, QR).
11. The least-squares method.
12. Linear programming.
13. Recurrent equations.
- Study Objective:
- Study materials:
-
1. Lloyd N. T., David B. : Numerical Linear Algebra. SIAM, 1997. ISBN 978-0898713619.
2. Lyche T. : Numerical Linear Algebra and Matrix Factorizations. Springer, 2020. ISBN 978-3030364670.
3. Gentle J. E. : Matrix Algebra: Theory, Computations and Applications in Statistics (2nd Edition). Springer, 2017. ISBN 978-3319648668.
4. Lengyel E. : Mathematics for 3D Game Programming and Computer Graphics (3rd Edition). Cengage Learning PTR, 2011. ISBN 978-1435458864.
- Note:
- Further information:
- http://courses.fit.cvut.cz/BI-LA2
- Time-table for winter semester 2024/2025:
- Time-table is not available yet
- Time-table for summer semester 2024/2025:
- Time-table is not available yet
- The course is a part of the following study plans:
-
- Bachelor Specialization Information Security, in Czech, 2021 (elective course)
- Bachelor Specialization Management Informatics, in Czech, 2021 (elective course)
- Bachelor Specialization Computer Graphics, in Czech, 2021 (PS)
- Bachelor Specialization Computer Engineering, in Czech, 2021 (PS)
- Bachelor program, unspecified specialization, in Czech, 2021 (VO)
- Bachelor Specialization Web Engineering, in Czech, 2021 (elective course)
- Bachelor Specialization Artificial Intelligence, in Czech, 2021 (PS)
- Bachelor Specialization Computer Science, in Czech, 2021 (PS)
- Bachelor Specialization Software Engineering, in Czech, 2021 (elective course)
- Bachelor Specialization Computer Systems and Virtualization, in Czech, 2021 (elective course)
- Bachelor Specialization Computer Networks and Internet, in Czech, 2021 (elective course)
- Bachelor Specialization Information Security, in Czech, 2024 (elective course)
- Bachelor program, unspecified specialization, in Czech, 2024 (VO)
- Bachelor Specialization Management Informatics, in Czech, 2024 (elective course)
- Bachelor Specialization Computer Graphics, in Czech, 2024 (PS)
- Bachelor Specialization Software Engineering, in Czech, 2024 (elective course)
- Bachelor Specialization Web Engineering, in Czech, 2024 (elective course)
- Bachelor Specialization Computer Networks and Internet, in Czech, 2024 (elective course)
- Bachelor Specialization Computer Engineering, in Czech, 2024 (compulsory elective course)
- Bachelor Specialization Computer Systems and Virtualization, in Czech, 2024 (elective course)
- Bachelor Specialization Artificial Intelligence, in Czech, 2024 (PS)
- Bachelor Specialization Computer Science, in Czech, 20214 (PS)