CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024

# Physics 1

Code Completion Credits Range Language
B2B02FY1 Z,ZK 8 4P+1L+2C Czech
Vztahy:
In order to register for the course B2B02FY2, the student must have received credit for the course B2B02FY1 in a previous semester.
Garant předmětu:
Petr Kulhánek
Lecturer:
Petr Koníček, Petr Kulhánek
Tutor:
Ilona Ali Bláhová, Václav Bára, Marek Brothánek, Milan Červenka, Vratislav Fabián, Vojtěch Jandák, Jaroslav Jíra, Petr Koníček, Petr Kulhánek, Jakub Malíř, Lukáš Matera, Yegor Mikhailov, Vojtěch Munzar, Jakub Pilař, Jaroslav Plocek, Bohuslav Rezek, Karel Řezáč, Ladislav Sieger, Daniel Urbán, Martin Žáček
Supervisor:
Department of Physics
Synopsis:

The basic course of physics at the Faculty of Electrical Engineering - Physics 1, is devoted to the introduction into two important areas of physics. The first one is a classical mechanics and the second one is the electric and magnetic field. Within the framework of the classical mechanics, the students study the particle kinematics; dynamics of the mass particle, system of mass particles and rigid bodies. The students should be able to solve basic problems dealing with the description of mechanical systems, which they can meet during their further studies. The classical mechanics is followed by the relativistic mechanics, electric and magnetic field - both stationary as well as non-stationary. The students can use the facts gained in this course in the study of electrical circuits, theory of electrotechnical materials or radioelectronics. Apart of this, the knowledge gained in this course is required for the study of the consecutive course Physics 2.

Requirements:

Knowledge of differential calculus.

Syllabus of lectures:

Lectures

1.Units, system of units. Physical fields. Reference frames.

2.Particle kinematics (rectilinear motion, circular motion, motion in three dimensions).

3.Newton?s laws, inertial and non-inertial reference frames, equations of motion in inertial and non-inertial reference frames.

4.Work, power, conservative fields, kinetic and potential energy. Conservation of mechanical energy law.

5.Foundations of analytical mechanics - conservation laws, constraints, generalized coordinates, Lagrangian, Lagrange?s equations of the 2nd order for conservative systems. Hamiltonian, Hamilton?s canonical equations.

6.Central forces, motion in the field of central force. Kepler?s laws, Newton?s law of universal gravitation, gravitational field of the system of n particles and extended bodies. Gravitational field intensity, potential and energy.

7.Mechanical oscillating systems. Simple harmonic motion damped and forced oscillations. Resonance of displacement and velocity. Combination of oscillatory motions.

8.System of n-particles, isolated and non-isolated systems, conservation of linear and angular momentum laws. Conservation of mechanical energy law for the system of n-particles. Center of mass and center of gravity. Rigid bodies, general motion, equations of motion, rotation of the rigid body with respect to the fixed axis and to the fixed point

9.Elasticity, stress, Hooke?s law.

10.Introduction to the mechanics of fluids - Euler?s equation, barometric formulae, Bernoulli?s equation, Pascal?s and Archimedes principle.

11.Fundamentals of theory of relativity, Lorentz transformation, relativistic kinematics and dynamics.

12.Electric charge, Coulomb?s law, electric field intensity and potential of the system of point charges and continuously distributed charges. Gauss? law, Maxwell?s equations for the electrostatic field in vacuum. Electric dipole, polarization and electric displacement vector, dielectrics in electric field. Maxwell?s equations for real-world materials. Conductor in electric field, Faraday?s cage. Capacitance, capacitor. Energy of the electrostatic field.

13.Stationary electric current, current density, conservation of an electric charge law, electromotive force, junction rule and loop theorem. Ohm?s law, Joule?s law. Magnetostatic field. Lorentz force, Ampere?s and Biot-Savart?s law. Magnetic dipole moment, magnetization, magnetic field strength. Current carrying conductor in magnetic field. Magnetic properties of matter. Energy of the magnetostatic field

14.Electromagnetic induction, energy of the electromagnetic field. Displacement current. Electromagnetic waves, wave equation, propagation of electromagnetic waves.

Syllabus of tutorials:

Corresponds with lecture outline

Study Objective:

Honourable.

Study materials:

1.Kulhánek, P.: Fyzika 1 pro KME.

2.Kurz MIT: Elektřina a magnetizmus.

3.Halliday, D., Resnick, R., Walker, J.: Fyzika, VUTIUM-PROMETHEUS, 2000.

4.Kvasnica, J., Havránek, A., Lukáč, P., Sprášil, B.: Mechanika, ACADEMIA, 2004.

5.Sedlák, B., Štoll, I.: Elektřina a magnetismus, ACADEMIA, 2002.

6.Fyzika I a II - fyzikální praktikum, M. Bednařík, P. Koníček, O. Jiříček.

7.Physics I, S. Pekárek, M. Murla, Dept. of Physics FEE CTU, 1992.

8.Physics I - Seminars, M. Murla, S. Pekárek, Vydavatelství ČVUT, 1995.

9.Physics I - II, Laboratory manual, S. Pekárek, M. Murla, Vydavatelství ČVUT, 2002.

Note:
Further information:
https://www.aldebaran.cz/studium/f1/
Time-table for winter semester 2023/2024:
Time-table is not available yet
Time-table for summer semester 2023/2024:
 06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00 roomT2:C4-78Ali Bláhová I.16:15–17:45(lecture parallel1parallel nr.104)DejviceT2:C4-78roomT2:A3-414Sieger L.Pilař J.18:00–19:30ODD WEEK(lecture parallel1parallel nr.103)DejviceCvicebna roomT2:A3-414Sieger L.Pilař J.16:15–17:45ODD WEEK(lecture parallel1parallel nr.101)DejviceCvicebnaroomT2:A3-413dSieger L.Pilař J.18:00–19:30ODD WEEK(lecture parallel1parallel nr.103)DejviceLaboratoř roomT2:A3-413bSieger L.Pilař J.16:15–17:45ODD WEEK(lecture parallel1parallel nr.101)DejviceLaboratoř K302roomT2:A3-413bSieger L.Pilař J.18:00–19:30ODD WEEK(lecture parallel1parallel nr.103)DejviceLaboratoř K302 roomT2:A3-413dSieger L.Pilař J.16:15–17:45ODD WEEK(lecture parallel1parallel nr.101)DejviceLaboratořroomT2:A3-414Pilař J.Sieger L.18:00–19:30EVEN WEEK(lecture parallel1parallel nr.104)DejviceCvicebna roomT2:A3-414Pilař J.Sieger L.16:15–17:45EVEN WEEK(lecture parallel1parallel nr.102)DejviceCvicebnaroomT2:A3-413bPilař J.Sieger L.18:00–19:30EVEN WEEK(lecture parallel1parallel nr.104)DejviceLaboratoř K302 roomT2:A3-413dPilař J.Sieger L.16:15–17:45EVEN WEEK(lecture parallel1parallel nr.102)DejviceLaboratořroomT2:A3-413dPilař J.Sieger L.18:00–19:30EVEN WEEK(lecture parallel1parallel nr.104)DejviceLaboratoř roomT2:A3-413bPilař J.Sieger L.16:15–17:45EVEN WEEK(lecture parallel1parallel nr.102)DejviceLaboratoř K302 roomT2:C3-135Kulhánek P.09:15–10:45(lecture parallel1)DejviceT2:C3-135roomT2:C3-51Ali Bláhová I.16:15–17:45(lecture parallel1parallel nr.101)DejviceT2:C3-51 roomT2:C2-84Jandák V.12:45–14:15(lecture parallel1parallel nr.103)DejviceUcebnaroomT2:C2-84Jandák V.14:30–16:00(lecture parallel1parallel nr.102)DejviceUcebna roomT2:A3-413bČervenka M.Sieger L.12:45–14:15EVEN WEEK(lecture parallel1parallel nr.105)DejviceLaboratoř K302roomT2:C4-365Jandák V.16:15–17:45(lecture parallel1parallel nr.105)DejviceCvičebnaroomT2:C2-84Jandák V.18:00–19:30(lecture parallel1parallel nr.106)DejviceUcebna roomT2:A3-413dČervenka M.Sieger L.12:45–14:15EVEN WEEK(lecture parallel1parallel nr.105)DejviceLaboratořroomT2:C3-135Kulhánek P.14:30–16:00(lecture parallel1)DejviceT2:C3-135 roomT2:A3-414Červenka M.Sieger L.12:45–14:15EVEN WEEK(lecture parallel1parallel nr.105)DejviceCvicebna roomT2:A3-413bSieger L.Červenka M.12:45–14:15ODD WEEK(lecture parallel1parallel nr.106)DejviceLaboratoř K302 roomT2:A3-414Sieger L.Červenka M.12:45–14:15ODD WEEK(lecture parallel1parallel nr.106)DejviceCvicebna roomT2:A3-413dSieger L.Červenka M.12:45–14:15ODD WEEK(lecture parallel1parallel nr.106)DejviceLaboratoř
The course is a part of the following study plans:
Data valid to 2024-06-23
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet4718606.html