CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024

# Mathematical Analysis 2

Code Completion Credits Range Language
B0B01MA2 Z,ZK 7 4P+2S Czech
Vztahy:
It is not possible to register for the course B0B01MA2 if the student is concurrently registered for or has already completed the course B0B01MA2A (mutually exclusive courses).
It is not possible to register for the course B0B01MA2 if the student is concurrently registered for or has previously completed the course B0B01MA2A (mutually exclusive courses).
Garant předmětu:
Petr Hájek, Jaroslav Tišer
Lecturer:
Martin Bohata, Petr Hájek, Jaroslav Tišer
Tutor:
Martin Bohata, Petr Hájek, Miroslav Korbelář, Karel Pospíšil, Hana Turčinová, Paola Vivi
Supervisor:
Department of Mathematics
Synopsis:

The subject covers an introduction to the

differential and integral calculus in

several variables and basic relations between curve and surface integrals.

Other part contains function series and power series with application to Taylor and

Fourier series.

Requirements:

https://moodle.fel.cvut.cz/course/view.php?id=6317

Syllabus of lectures:

1. Functions of more variables, limit, continuity.

2. Directional and partial derivatives - gradient.

3. Derivative of a composition of function, higher order derivatives.

4. Jacobiho matrix. Local extrema.

5. Extrema with constraints. Lagrange multipliers.

6. Double and triple integral - Fubini theorem and theorem on substitution.

7. Path integral and its applications.

8. Surface integral and its applications.

9. The Gauss, Green, and Stokes theorems.

10. Potential of vector fields.

11. Basic convergence tests for series.

12. Series of functions, the Weierstrass test. Power series.

13. Standard Taylor expansions. Fourier series.

Syllabus of tutorials:

1. Functions of more variables, limit, continuity.

2. Directional and partial derivatives - gradient.

3. Derivative of a composition of function, higher order derivatives.

4. Jacobiho matrix. Local extrema.

5. Extrema with constraints. Lagrange multipliers.

6. Double and triple integral - Fubini theorem and theorem on substitution.

7. Path integral and its applications.

8. Surface integral and its applications.

9. The Gauss, Green, and Stokes theorems.

10. Potential of vector fields.

11. Basic convergence tests for series.

12. Series of functions, the Weierstrass test. Power series.

13. Standard Taylor expansions. Fourier series.

Study Objective:

The aim of the course is to introduce students to basics of differential and integral calculus of functions of more variables and theory of series.

Study materials:

[1] Stewart J.: Calculus, Seventh Edition, Brooks/Cole, 2012, 1194 p., ISBN 0-538-49781-5.

[2] L. Gillman, R. H. McDowell, Calculus, W.W.Norton &amp; Co.,New York, 1973

[3] S. Lang, Calculus of several variables, Springer Verlag, 1987

Note:
Further information:
https://moodle.fel.cvut.cz/courses/B0B01MA2
Time-table for winter semester 2023/2024:
 06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00 roomT2:C4-364Korbelář M.09:15–10:45(lecture parallel1parallel nr.109)DejviceCvicebnaroomT2:C4-365Korbelář M.11:00–12:30(lecture parallel1parallel nr.101)DejviceCvičebnaroomT2:C3-54Korbelář M.12:45–14:15(lecture parallel1parallel nr.102)DejviceT2:C3-54roomT2:C3-135Hájek P.16:15–17:45(lecture parallel1)DejviceT2:C3-135 roomT2:D3-209Hájek P.16:15–17:45(lecture parallel1)DejviceT2:D3-209 room16:15–17:45(lecture parallel1parallel nr.106) roomT2:C4-364Korbelář M.09:15–10:45(lecture parallel1parallel nr.103)DejviceCvicebnaroomT2:C4-78Korbelář M.11:00–12:30(lecture parallel1parallel nr.104)DejviceT2:C4-78room16:15–17:45(lecture parallel1parallel nr.105) roomT2:D3-309Hájek P.12:45–14:15(lecture parallel1)DejviceT2:D3-309 roomKN:E-12812:45–14:15(lecture parallel1parallel nr.107)Karlovo nám.Cvičebna K3roomKN:E-12814:30–16:00(lecture parallel1parallel nr.108)Karlovo nám.Cvičebna K3
Time-table for summer semester 2023/2024:
 06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00 roomT2:C4-155Turčinová H.09:15–10:45(lecture parallel1parallel nr.106)DejviceCvičebnaroomT2:C4-155Turčinová H.11:00–12:30(lecture parallel1parallel nr.107)DejviceCvičebnaroomT2:D3-209Bohata M.14:30–16:00(lecture parallel1)DejviceT2:D3-209 roomT2:C3-51Vivi P.11:00–12:30(lecture parallel1parallel nr.104)DejviceT2:C3-51roomT2:C4-78Vivi P.12:45–14:15(lecture parallel1parallel nr.105)DejviceT2:C4-78 roomT2:C4-36511:00–12:30(lecture parallel1parallel nr.108)DejviceCvičebnaroomT2:C4-36512:45–14:15(lecture parallel1parallel nr.109)DejviceCvičebna roomT2:D3-209Bohata M.09:15–10:45(lecture parallel1)DejviceT2:D3-209roomT2:C4-155Bohata M.11:00–12:30(lecture parallel1parallel nr.110)DejviceCvičebna roomT2:C3-54Turčinová H.12:45–14:15(lecture parallel1parallel nr.101)DejviceT2:C3-54roomT2:C3-54Turčinová H.14:30–16:00(lecture parallel1parallel nr.102)DejviceT2:C3-54room16:15–17:45(lecture parallel1parallel nr.103)
The course is a part of the following study plans:
Data valid to 2024-08-13
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet4680806.html