Advanced robotics
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
B3M33PRO | Z,ZK | 6 | 2P+2C | Czech |
- Relations:
- It is not possible to register for the course B3M33PRO if the student is concurrently registered for or has already completed the course BE3M33PKR (mutually exclusive courses).
- It is not possible to register for the course B3M33PRO if the student is concurrently registered for or has already completed the course BE3M33PRO (mutually exclusive courses).
- It is not possible to register for the course B3M33PRO if the student is concurrently registered for or has already completed the course AE3M33PRO (mutually exclusive courses).
- In order to register for the course B3M33PRO, the student must have registered for the required number of courses in the group BEZBM no later than in the same semester.
- It is not possible to register for the course B3M33PRO if the student is concurrently registered for or has already completed the course B3M33PKR (mutually exclusive courses).
- The requirement for course B3M33PRO can be fulfilled by substitution with the course BE3M33PRO.
- The requirement for course B3M33PRO can be fulfilled by substitution with the course BE3M33PKR.
- It is not possible to register for the course B3M33PRO if the student is concurrently registered for or has previously completed the course BE3M33PKR (mutually exclusive courses).
- It is not possible to register for the course B3M33PRO if the student is concurrently registered for or has previously completed the course BE3M33PRO (mutually exclusive courses).
- It is not possible to register for the course B3M33PRO if the student is concurrently registered for or has previously completed the course B3M33PKR (mutually exclusive courses).
- The requirement for course B3M33PRO can be fulfilled by substitution with the course B3M33PKR.
- Course guarantor:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Cybernetics
- Synopsis:
-
We will explain and demonstrate techniques for modelling, analyzing and identifying robot kinematics. We will explain more advanced principles of the representation of motion in space and the robot descriptions suitable for identification of kinematic parameters from measured data. We will explain how to solve the inverse kinematic task of 6DOF serial manipulators and how it can be used to identify its kinematic parameters. Theory will be demonstrated on simulated tasks and verified on a real industrial robot.
- Requirements:
-
A course of basic robotics, e.g. A3B33ROB.
- Syllabus of lectures:
-
1. Introduction, algebraic equations and eigenvalues
2. Motion: Motion as a transformation of coordinates
3. Kinematics: Denavit-Hartenberg convention for a manipulator
4. Solving algebraic equations
5. Motion axis and the rotation matrix
6. Inverse kinematic task of a general 6R serial manipulator I
7. Inverse kinematic task of a general 6R serial manipulator II
8. Rotation reprezentation and parameterization
9. Angle-axis parameterization
10. Quaternions
11. Manipulator calibration
12. Summary and review.
- Syllabus of tutorials:
-
1. Introduction to laboratory, Maple, a-test.
2. Correcting a-test, Maple.
3. Spatial rotations, representations, axis of motion.
4. Modified Denavit-Hartenberg notation.
5. Kinematics of redundant manipulator.
6. Solving algebraic equations.
7. Singular poses of a manipulator and their determination.
8. Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator.
9. Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator.
10. Task 1: Solving inverse kinematics task for a general 6DOF serial manipulator.
11. Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator.
12. Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator.
13. Task 2: Identification of kinematical parameters of a general 6DOF serial manipulator.
14. Presentation of solutions.
- Study Objective:
-
The goal is do present more advanced methods of analysis and modeling of robot kinematics.
- Study materials:
-
Reza N. Jazar: Theory of Applied Robotics: Kinematics, Dynamics, and Control. Springer, second edition, 2010.
A text book covering the geometry and kinematics of manipulators. Available in th e library of the CTU in Prague.
M. Meloun, T. Pajdla. Inverse Kinematics for a General 6R Manipulator. CTU-CMP?2013-29. 2013.
Algebraic-numeric solution to Inverse kinematic task of a 6R manipulator.
ftp://cmp.felk.cvut.cz/pub/cmp/articles/meloun/Meloun-TR-2013-29.pdf
T. Pajdla. Elements of Geometry for Robotics. 2014.
Geometry and representation of motion.
Available in PDF: cmp.felk.cvut.cz/cmp/courses/PRO/2014/Lecture/PRO-2014-Lecture.pdf
- Note:
- Further information:
- http://cw.fel.cvut.cz/wiki/courses/pro
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Cybernetics and Robotics - Systems and Control (compulsory elective course)
- Cybernetics and Robotics - Robotics (compulsory course of the specialization)
- Cybernetics and Robotics - Senzors and Instrumention (compulsory elective course)
- Cybernetics and Robotics - Aerospace Systems (compulsory elective course)
- Cybernetics and Robotics - Cybernetics and Robotics (compulsory elective course)