Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024

Structural Mechanics 2

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
132SM02 Z,ZK 6 2P+2C Czech

Garant předmětu:
Michal Polák
Lecturer:
Magdaléna Boháčová, Miroslav Čáp, Martin Doškář, Dagmar Jandeková, Anna Kučerová, Matěj Lepš, Karel Pohl, Michal Polák, Daniel Rypl, Jan Sýkora
Tutor:
Magdaléna Boháčová, Miroslav Čáp, Martin Doškář, Tomáš Janda, Dagmar Jandeková, Aleš Jíra, Tomáš Koudelka, Anna Kučerová, Matěj Lepš, Jitka Němečková, Karel Pohl, Michal Polák, Daniel Rypl, Jan Sýkora, Martin Válek, Jan Vozáb
Supervisor:
Department of Mechanics
Synopsis:

Internal forces diagrams of simple statically determinate plane structures and compound two-dimensional structures. Multiaxially loaded cantilever. Definition of normal stress and prepositions of its distribution in a cross section. Equivalence of internal forces. Geometry of mass and areas, centre of gravity and moments of inertia.

Requirements:

Before taking exam in 132SM02, it is required that students pass the exam in 132SM01.

Syllabus of lectures:

1) Introduction, definition and principle of calculation of internal forces in the selected cross-section of a beam.

2) Load transfer on the centre line of the beam, calculation of the internal forces on the three-dimensional straight beam and the three-dimensional cranked beams.

3) Calculation of the internal forces in the cross-section of an inclined beam and a plane frame beam structure, equilibrium in the joints of the frame beam structure.

4) Differential relationships between the internal forces and the loads for the straight plane beam and three-dimensional beam.

5) The functions of internal forces on the plane straight beam structure, extremes of the internal forces.

6) The functions of the internal forces on the plane inclined beam structure.

7) The internal force diagrams on the plane simple frame beam structures and on the plane complex frame beam structures.

8) The functions of the internal forces on the beam with a curved centre line, the parabolic and circular centre line.

9) The internal forces diagrams on symmetrical structures loaded with symmetrical loads.

10) The centre of gravity and moments of inertia of the cross sections, transformation of moments of inertia.

11) The principal central moments of inertia of the cross section, the ellipse of inertia.

12) Variable loads on building structures, snow load and wind load.

13) Combinations of load cases.

Syllabus of tutorials:

1) Principle of marking the internal forces, calculation of the internal forces (bending moment M, normal force N, shear force V) in the cross-section of a straight beam structure.

2) Load transfer on the centre line of the beam, calculation of M, N, V in the cross-section of the three-dimensional straight beam and the three-dimensional cranked beams.

3) Calculation of M, N, V in the cross-section of an inclined beam and a plane frame beam structure, equilibrium in the joints of the frame beam structure.

4) The M, N, V diagrams on a plane straight beam – uniformly distributed load, triangular distributed load, trapezoidal distributed load, extremes of the internal forces.

5) The M, N, V diagrams on the plane frame beam structure - uniformly distributed load, triangular distributed load, trapezoidal distributed load, extremes of the internal forces, equilibrium in the joints of the frame beam structure.

6) The M, N, V diagrams on the plane frame structure with inclined beams.

7) The M, N, V diagrams on the plane complex frame beam structures.

8) The M, N, V diagrams on the beam with a curved centre line.

9) The M, N, V diagrams on a generally loaded three-dimensional straight beam.

10) The centre of gravity and moments of inertia of the composite cross sections, the principal central moments of inertia, the ellipse of inertia of the composite cross-sections.

11) The centre of gravity and moments of inertia of the composite cross sections, the principal central moments of inertia, the ellipse of inertia of the composite cross-sections.

12) Variable loads on building structures, snow load and wind load.

13) Combinations of load cases.

Study Objective:

Student will be able to solve internal forces diagrams of statically determinate plane structures and multiaxially loaded cantilevers and to determine second moments of area.

Study materials:

!Jíra, A. a kolektiv: Sbírka příkladů stavební mechaniky. ČVUT, Praha, 2019, ISBN:978-80-01-06301-9 (it is currently available online on: http://mech.fsv.cvut.cz/wiki/images/6/67/Sbirka_prikladu_SUK.pdf).

! Kufner, V., Kuklík, P.: Stavební mechanika 20, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01523-8.

! Kufner, V., Kuklík, P.: Stavební mechanika 30, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01893-8.

! Kufner, V., Kuklík, P.: Stavební mechanika 10, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01398-7.

? Beer F. P., Johnston Jr. E. R., Mazurek D.: Vector Mechanics for Engineers: Statics 11th Edition, McGraw-Hill Education, 2016, ISBN 978-0077687304.

: Study materials on the website of the department: https://mech.fsv.cvut.cz/student/

Note:
Time-table for winter semester 2023/2024:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
roomTH:B-286

12:00–13:50
(lecture parallel1)
Thákurova 7 (budova FSv)
B286
Tue
roomTH:B-975

08:00–09:50
(lecture parallel1
parallel nr.105)

Thákurova 7 (budova FSv)
B975
roomTH:B-686

14:00–15:50
(lecture parallel1
parallel nr.101)

Thákurova 7 (budova FSv)
B686
roomTH:C-208

14:00–15:50
(lecture parallel1
parallel nr.103)

Thákurova 7 (budova FSv)
C208
Wed
roomTH:B-874

08:00–09:50
(lecture parallel1
parallel nr.106)

Thákurova 7 (budova FSv)
B874
Thu
roomTH:B-876

10:00–11:50
(lecture parallel1
parallel nr.104)

Thákurova 7 (budova FSv)
B876
roomTH:C-206

10:00–11:50
(lecture parallel1
parallel nr.102)

Thákurova 7 (budova FSv)
C206
Fri
Time-table for summer semester 2023/2024:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2023-11-30
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet2335506.html