Electricity and Magnetism
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
02ELMA | Z,ZK | 6 | 4+2 | Czech |
- Relations:
- In order to register for the course 02ELMA, the student must have successfully completed or received credit for and not exhausted all examination dates for the course 02MECH. The course 02ELMA can be graded only after the course 02MECH has been successfully completed.
- Course guarantor:
- Jiří Hrivnák, Goce Chadzitaskos
- Lecturer:
- Jiří Hrivnák, Goce Chadzitaskos, Iskender Yalcinkaya
- Tutor:
- Jiří Hrivnák, Lenka Motlochová, Šárka Salačová, Josef Schmidt, Stanislav Skoupý, Vojtěch Teska, Jan Vysoký, Iskender Yalcinkaya
- Supervisor:
- Department of Physics
- Synopsis:
-
Electric charge, Coulomb's law, electrostatic field, Gauss' law. Electric dipole, polarization. Conductors and dielectrics. Electric current and circuits, conductivity. Basics of the relativity theory. Electrodynamic forces, magnetic field. Magnetic dipole, magnetics. Electromagnetic induction, RLC circuits. Electromagnetic waves, Maxwell equations.
- Requirements:
-
Knowledge of high school mathematics and physics is required. Basic calculus (differentiation and integration) and basic trigonometry would be useful but are not necessary.
- Syllabus of lectures:
-
1. Mathematical preliminaries:
Vectors, vector operations, gradient, divergence, curl, and their fundamental theorems. Line, surface, and volume integrals. Curvilinear coordinates, Dirac delta function, vector field theory, potentials, and Helmholtz theorem.
2. Electrostatics:
Coulombs law, superposition principle, electric fields from charge distributions, field lines, and Gausss law. Electric potential, Poissons/Laplaces equation, work and energy in electrostatics. Boundary conditions, conductors, insulators, Faraday cage, surface charges, force on conductors, and capacitors. Multipole expansion, dipoles, induced dipoles, polarization, bound charges, and their physical meaning.
3. Magnetostatics:
Lorentz force, cyclotron motion, current density, continuity equation, Biot-Savart law, and Ampères law. Magnetic vector potential and its multipole expansion. Magnetic fields in matter, torque on magnetic dipoles, atomic orbits, magnetization, paramagnetism, diamagnetism, bound currents, and an introduction to ferromagnetism.
4. Electrodynamics:
Conductivity, resistivity, Ohms law, electrical circuits, electromotive force (emf), batteries, motional emf, and electromagnetic induction (Faradays and Lenzs laws). Eddy currents, inductance, RLC circuits, energy in magnetic fields, and Maxwells equations.
5. Electromagnetic waves:
Wave equation, sinusoidal waves, electromagnetic waves in vacuum, monochromatic plane waves, and Poyntings theorem.
6. Special relativity:
Einsteins postulates, time dilation, Lorentz contraction, Galilean and Lorentz transformations, spacetime structure, proper time/velocity, relativistic energy and momentum. Magnetism as a relativistic effect, field transformations, field tensor, and moving charge fields.
- Syllabus of tutorials:
-
Practice problems on the covered topics corresponding to the lecture syllabus above.
- Study Objective:
-
Learning the basics of electricity and magnetism, and solving relevant problems.
- Study materials:
-
Key references:
[1] D. J. Griffiths: Introduction to Electrodynamics, Cambridge University Press; 3rd edition, 1999
[2] E. M. Purcell and D. J. Morin: Electricity and Magnetism, Cambridge University Press; 3 edition, 2013
[3] D. C. Pandey: Electricity & Magnetism, Arihant Publications, 2016
Recommended references:
[4] P. A. Tipler: Physics I, II. Worth Publisher, 1976.
- Note:
-
Full syllabus: https://people.fjfi.cvut.cz/yakcuisk/pdf/electromagnetism-syllabus.pdf
- Time-table for winter semester 2024/2025:
- Time-table is not available yet
- Time-table for summer semester 2024/2025:
- Time-table is not available yet
- The course is a part of the following study plans:
-
- Fyzikální inženýrství - Počítačová fyzika (PS)
- Aplikovaná algebra a analýza (compulsory course in the program)
- Aplikované matematicko-stochastické metody (compulsory course in the program)
- Jaderné inženýrství - Aplikovaná fyzika ionizujícího záření (PS)
- Fyzikální inženýrství - Fyzikální inženýrství materiálů (PS)
- Fyzikální inženýrství - Fyzika plazmatu a termojaderné fúze (PS)
- Fyzikální inženýrství - Inženýrství pevných látek (PS)
- Jaderná a částicová fyzika (compulsory course in the program)
- Jaderná chemie (compulsory course in the program)
- Jaderné inženýrství - Jaderné reaktory (PS)
- Fyzikální inženýrství - Laserová technika a fotonika (PS)
- Matematické inženýrství - Matematická fyzika (PS)
- Matematické inženýrství - Matematická informatika (PS)
- Matematické inženýrství - Matematické modelování (PS)
- Kvantové technologie (compulsory course in the program)
- Radiologická technika (compulsory course in the program)
- jaderné inženýrství - Radioaktivita v životním prostředí (PS)
- Vyřazování jaderných zařízení z provozu (compulsory course in the program)
- Physical Engineering - Computational physics (PS)
- Quantum Technologies (compulsory course in the program)
- Nuclear and Particle Physics (compulsory course in the program)
- Physical Engineering - Physical Engineering od Materials (PS)
- Mathematical Engineering - Mathematical Physics (PS)
- Physical Engineering - Plasma Physics and Thermonuclear Fusion (PS)