Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2023/2024

Matematika 3

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah Jazyk výuky
101MA3E Z,ZK 6 2P+2C česky
Vztahy:
Předmět 101MA3E lze klasifikovat až po úspěšné klasifikaci předmětu 101MA2E
Garant předmětu:
Michal Beneš
Přednášející:
Michal Beneš, Martin Hála
Cvičící:
Michal Beneš, Martin Hála, Martin Soukenka
Předmět zajišťuje:
katedra matematiky
Anotace:

Přednáška sestává ze dvou hlavních tematických okruhů: (1) obyčejné diferenciální rovnice, dvojný a trojný integrál, křivkové integrály; (2) základy statistiky a pravděpodobnosti. Témata: (1a) Lineární diferenciální rovnice n-tého řádu, počáteční úloha. Homogenní rovnice: fundamentální systém, obecné řešení. Konstrukce fundamentálního systému pro rovnici s konstantními koeficienty. Redukce řádu. Nehomogenní rovnice: variace konstant a metoda speciální pravé strany pro rovnici s konstantními koeficienty. Skalární součin funkcí na prostoru C([a, b]), ortogonalita funkcí. Formulace okrajové úlohy, příklady. Úloha u'' + a u = f, u(0) = u(L) = 0, její vlastní čísla a vlastní funkce. Ortogonalita vlastních funkcí odpovídajících různým vlastním číslům, řešitelnost úlohy v závislosti na „a“. Další typy okrajových úloh. (1b) Dvojný integrál: Fubiniova věta, věta o substituci, substituce do (zobecněných) polárních souřadnic. Aplikace dvojného integrálu, příklady. Trojný integrál: Fubiniova věta, věta o substituci, substituce v trojném integrálu do (zobecněných) sférických souřadnic a (zobecněných) cylindrických souřadnic. Aplikace trojného integrálu, příklady. Křivkový integrál prvního druhu a jeho aplikace. Křivkový integrál druhého druhu, Greenova věta. Potenciální pole, aplikace křivkového integrálu druhého druhu. Příklady na použití křivkových integrálů. (2) Popisná statistika jednoho souboru. Popisná statistika jednoho (boxplot, odlehlá pozorování) a dvou souborů. Popisná statistika dvourozměrného souboru, popisná lineární regrese. Pojem pravděpodobnosti, klasická definice pravděpodobnosti. Podmíněná pravděpodobnost, nezávislé jevy. Diskrétní náhodná proměnná, její charakteristiky. Binomické rozdělení. Spojité rozdělení. Charakteristiky spojité proměnné. Normální rozdělení. Aplikace normálního rozdělení. Statistická inference.

Požadavky:

https://mat.fsv.cvut.cz/vyuka/bakalari/zs/MA3SI/

Osnova přednášek:

https://mat.fsv.cvut.cz/vyuka/bakalari/zs/MA3SI/

Osnova cvičení:

https://mat.fsv.cvut.cz/vyuka/bakalari/zs/MA3SI/

Cíle studia:

https://mat.fsv.cvut.cz/vyuka/bakalari/zs/MA3SI/

Studijní materiály:

! O. Zindulka: Matematika 3, Česká technika - nakladatelství ČVUT, FSv, Praha 2007, ISBN: 978-80-01-03678-5.

! B. Budinský, J. Charvát: Matematika II. Skriptum ČVUT, Vydavatelství ČVUT, 2002, ISBN: 80-01-01092-9.

! D. Jarušková: Pravděpodobnost a matematická statistika, Česká technika - nakladatelství ČVUT, FSv, Praha 2011, ISBN: 978-80-01-04829-0.

! D. Jarušková, M. Hála: Pravděpodobnost a matematická statistika. Příklady, Česká technika - nakladatelství ČVUT, FSv, Praha 2011, ISBN: 978-80-01-04828-3.

? F. Bubeník: Mathematics for Engineers. Skriptum CVUT, 2014, ISBN 978-80-01-03792-8.

? F. Bubeník, M. Pultar, I. Pultarová: Matematické vzorce a metody. Vydavatelství ČVUT, Praha 2010, ISBN 978-80-01-04524-4.

? K. Rektorys: Prehled užité matematiky. Prometheus, Praha 2000, ISBN 80-85849-92-5.

Poznámka:
Rozvrh na zimní semestr 2023/2024:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po
místnost TH:C-204

16:00–17:50
(přednášková par. 1)
Thákurova 7 (budova FSv)
C204
Út
St
Čt
místnost TH:B-692

10:00–11:50
(přednášková par. 1
paralelka 103)

Thákurova 7 (budova FSv)
B692
místnost TH:B-471

10:00–11:50
(přednášková par. 1
paralelka 102)

Thákurova 7 (budova FSv)
B471

Rozvrh na letní semestr 2023/2024:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po
Út
místnost TH:C-223

16:00–17:50
(přednášková par. 1)
Thákurova 7 (budova FSv)
C223
místnost TH:C-223

18:00–19:50
(přednášková par. 1
paralelka 101)

Thákurova 7 (budova FSv)
C223
St
Čt

Předmět je součástí následujících studijních plánů:
Platnost dat k 18. 7. 2024
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/cs/predmet7599506.html