CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2019/2020

# Mathematical Analysis 2

Code Completion Credits Range Language
B0B01MA2 Z,ZK 7 4P+2S Czech
The course cannot be taken simultaneously with:
Mathematical Analysis 2 (B0B01MA2A)
Lecturer:
Petr Hájek (guarantor), Jaroslav Tišer (guarantor)
Tutor:
Petr Hájek (guarantor), Jaroslav Tišer (guarantor), Josef Hekrdla, Miroslav Korbelář, Martin Křepela, Paola Vivi, Natalie Žukovec
Supervisor:
Department of Mathematics
Synopsis:

The subject covers an introduction to the

differential and integral calculus in

several variables and basic relations between curve and surface integrals.

Other part contains function series and power series with application to Taylor and

Fourier series.

Requirements:

https://math.feld.cvut.cz/hajek/zkouska-info.pdf

Syllabus of lectures:

1. Basic convergence tests for series.

2. Series of functions, the Weierstrass test. Power series.

3. Standard Taylor expansions. Fourier series.

4. Functions of more variables, limit, continuity.

5. Directional and partial derivatives - gradient.

6. Derivative of a composition of function, higher order derivatives.

7. Jacobiho matrix. Local extrema.

8. Extrema with constraints. Lagrange multipliers.

9. Double and triple integral - Fubini theorem and theorem on substitution.

10. Path integral and its applications.

11. Surface integral and its applications.

12. The Gauss, Green, and Stokes theorems.

13. Potential of vector fields.

Syllabus of tutorials:

1. Basic convergence tests for series.

2. Series of functions, the Weierstrass test. Power series.

3. Standard Taylor expansions. Fourier series.

4. Functions of more variables, limit, continuity.

5. Directional and partial derivatives - gradient.

6. Derivative of a composition of function, higher order derivatives.

7. Jacobiho matrix. Local extrema.

8. Extrema with constraints. Lagrange multipliers.

9. Double and triple integral - Fubini theorem and theorem on substitution.

10. Path integral and its applications.

11. Surface integral and its applications.

12. The Gauss, Green, and Stokes theorems.

13. Potential of vector fields.

Study Objective:

The aim of the course is to introduce students to basics of differential and integral calculus of functions of more variables and theory of series.

Study materials:

[1] Stewart J.: Calculus, Seventh Edition, Brooks/Cole, 2012, 1194 p., ISBN 0-538-49781-5.

[2] L. Gillman, R. H. McDowell, Calculus, W.W.Norton &amp; Co.,New York, 1973

[3] S. Lang, Calculus of several variables, Springer Verlag, 1987

Note:
Further information:
https://moodle.fel.cvut.cz/courses/B0B01MA2
Time-table for winter semester 2019/2020:
 06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00 roomT2:A4-202bKorbelář M.11:00–12:30(lecture parallel1parallel nr.101)DejviceUčebnaroomT2:A4-202bKorbelář M.12:45–14:15(lecture parallel1parallel nr.102)DejviceUčebnaroomT2:D3-209Hájek P.16:15–17:45(lecture parallel1)DejvicePosluchárna roomT2:C4-364Korbelář M.09:15–10:45(lecture parallel1parallel nr.103)DejviceCvicebnaroomT2:C4-364Korbelář M.11:00–12:30(lecture parallel1parallel nr.104)DejviceCvicebnaroomT2:C3-5116:15–17:45(lecture parallel1parallel nr.105)DejvicePosluchárna roomT2:D3-309Hájek P.12:45–14:15(lecture parallel1)DejvicePosluchárna roomKN:E-128Hekrdla J.12:45–14:15(lecture parallel1parallel nr.107)Karlovo nám.Cvičebna K3roomKN:E-128Hekrdla J.14:30–16:00(lecture parallel1parallel nr.108)Karlovo nám.Cvičebna K3
Time-table for summer semester 2019/2020:
 06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00 roomT2:A4-204Hekrdla J.09:15–10:45(lecture parallel1parallel nr.106)DejviceUčebnaroomT2:D2-256Tišer J.14:30–16:00(lecture parallel1)DejvicePosluchárna roomT2:A4-204Hekrdla J.11:00–12:30(lecture parallel1parallel nr.107)DejviceUčebnaroomT2:D2-256Tišer J.14:30–16:00(lecture parallel2)DejvicePosluchárna roomT2:A4-202aŽukovec N.11:00–12:30(lecture parallel1parallel nr.108)DejviceUcebnaroomT2:A4-202aŽukovec N.12:45–14:15(lecture parallel1parallel nr.109)DejviceUcebnaroomT2:C4-36418:00–19:30(lecture parallel1parallel nr.110)DejviceCvicebna roomT2:C3-51Vivi P.11:00–12:30(lecture parallel1parallel nr.104)DejvicePosluchárnaroomT2:C4-78Vivi P.12:45–14:15(lecture parallel1parallel nr.105)DejvicePosluchárna roomT2:D2-256Tišer J.08:15–10:00(lecture parallel1)DejvicePosluchárnaroomT2:C3-51Tišer J.11:00–12:30(lecture parallel1parallel nr.118)DejvicePosluchárna roomT2:D2-256Tišer J.08:15–10:00(lecture parallel2)DejvicePosluchárna roomT2:C3-54Hekrdla J.12:45–14:15(lecture parallel1parallel nr.101)DejvicePosluchárnaroomT2:C3-54Hekrdla J.14:30–16:00(lecture parallel1parallel nr.102)DejvicePosluchárnaroomT2:C3-54Hekrdla J.16:15–17:45(lecture parallel1parallel nr.103)DejvicePosluchárna roomT2:A4-20407:30–09:00(lecture parallel1parallel nr.114)DejviceUčebnaroomT2:A4-20409:15–10:45(lecture parallel1parallel nr.115)DejviceUčebnaroomT2:A4-20411:00–12:30(lecture parallel1parallel nr.116)DejviceUčebna roomT2:C3-5109:15–10:45(lecture parallel2parallel nr.201)DejvicePosluchárnaroomT2:C3-51Hekrdla J.11:00–12:30(lecture parallel2parallel nr.202)DejvicePosluchárna roomT2:C3-5109:15–10:45(lecture parallel1parallel nr.111)DejvicePosluchárnaroomT2:C3-5111:00–12:30(lecture parallel1parallel nr.112)DejvicePosluchárna
The course is a part of the following study plans:
Data valid to 2020-06-07
For updated information see http://bilakniha.cvut.cz/en/predmet4680806.html