Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2019/2020

Pokročilá robotika

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah Jazyk výuky
B3M33PRO Z,ZK 6 2P+2C česky
Korekvizita:
Bezpečnost práce v elektrotechnice pro magistry (BEZM)
Předmět nesmí být zapsán současně s:
Advanced robotics (AE3M33PRO)
Advanced robotics (BE3M33PRO)
Přednášející:
Tomáš Pajdla (gar.), Vladimír Smutný
Cvičící:
Tomáš Pajdla (gar.), Michal Polic, Stanislav Steidl
Předmět zajišťuje:
katedra kybernetiky
Anotace:

Předmět vysvětlí a předvede metody pro popis, kalibraci a analýzu kinematiky průmyslových robotů. Hlouběji vysvětlí

principy reprezentace prostorového pohybu a popisy robotů pro kalibraci jejich kinematických parametrů z měřených

dat. Vysvětlíme řešení inverzní kinematické úlohy pro obecný 6DOF manipulátor a použití pro identifikaci parametrů

robotu. Základním teoretickým výpočetním nástrojem pro řešení kinematických, kalibračních a analytických úloh bude

lineární a polynomiální algebra a metody výpočetní algebraické geometrie. Teoretické techniky budou demonstrovány v

simulacích a ověřovány na datech z reálných průmyslových robotů.

Požadavky:

A3B33ROB

Osnova přednášek:

1. Úvod, algebraické rovnice a vlastní čísla matice

2. Pohyb jako transformace souřadnic

3. Denavit-Hartenberg konvence sériového manipulátoru

4. Algebraické rovnice a metoda jejich řešení

5. Rotační matice a osa pohybu

6. Inverzní kinematická úloha pro obecný 6R sériový manipulátor I

7. Inverzní kinematická úloha pro obecný 6R sériový manipulátor II

8. Reprezentace a parametrizace rotace

9. Parametrizace osa-úhel

10. Kvaterniony

11. Kalibrace manipulátoru

12. Shrnutí.

Osnova cvičení:

1. Seznámení s laboratorními úlohami, Maple, a-test

2. Oprava a-testu, Maple,.

3. Rotace v prostoru a její reprezentace, osa pohybu.

4. Modifikovaný Denavitův-Hartenbergův popis kinematiky manipulátoru.

5. Popis manipulátoru s redundantní kinematikou

6. Soustavy algebraických rovnic a její řešení.

7. Nalezení singulárních polohy manipulátoru.

8. Úloha 1: Řešení inverzní kinematiky 6DOF sériového manipulátoru 1.

9. Úloha 1: Řešení inverzní kinematiky 6DOF sériového manipulátoru 2.

10. Úloha 1: Řešení inverzní kinematiky 6DOF sériového manipulátoru 3.

11. Úloha 2: Identifikace kinematických parametrů 6DOF sériového manipulátoru 1.

12. Úloha 2: Identifikace kinematických parametrů 6DOF sériového manipulátoru 2

13. Úloha 2: Identifikace kinematických parametrů 6DOF sériového manipulátoru 3.

14. Prezentace úloh.

Cíle studia:

Cílem předmětu je představit pokročilejší metody analýzy a modelování kinematiky robotů.

Studijní materiály:

Reza N. Jazar: Theory of Applied Robotics: Kinematics, Dynamics, and Control. Springer, druhé vydání, 2010.

Učednice pokrývající geometrii a kinamematiku manipulátorů. Dostupná v knihovně ČVUT.

M. Meloun, T. Pajdla. Inverse Kinematics for a General 6R Manipulator. CTU-CMP?2013-29. 2013.

Algebraicko-numerické řešení inversní kinematické úlohy 6R manipulátoru.

ftp://cmp.felk.cvut.cz/pub/cmp/articles/meloun/Meloun-TR-2013-29.pdf

T. Pajdla. Elements of Geometry for Robotics. 2014.

Geometry and representation of motion.

Dostupné v PDF: cmp.felk.cvut.cz/cmp/courses/PRO/2014/Lecture/PRO-2014-Lecture.pdf

Poznámka:
Další informace:
http://cw.fel.cvut.cz/wiki/courses/pro
Rozvrh na zimní semestr 2019/2020:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Po
místnost JP:B-670
Pajdla T.
Smutný V.

11:00–12:30
(přednášková par. 1)
Jugoslávských partyzánů 3
místnost JP:B-670
Polic M.
Steidl S.

12:45–14:15
(přednášková par. 1
paralelka 101)

Jugoslávských partyzánů 3
Út
St
Čt

Rozvrh na letní semestr 2019/2020:
Rozvrh není připraven
Předmět je součástí následujících studijních plánů:
Platnost dat k 18. 10. 2019
Aktualizace výše uvedených informací naleznete na adrese http://bilakniha.cvut.cz/cs/predmet4678206.html