Calculus B 3
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01ANB3 | Z,ZK | 8 | 4P+4C | Czech |
- Vztahy:
- The course 01ANB3 can be graded only after the course 01MAN2 has been successfully completed.
- The course 01ANB4 can be graded only after the course 01ANB3 has been successfully completed.
- Garant předmětu:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Mathematics
- Synopsis:
-
1. Functional sequences and series - convergence range, criteria of uniform convergence, continuity, limit, differentiation and integration of functional series, power series, Series Expansion, Taylor´s theorem.
2. Ordinary differential equations - equations of first order (method of integration factor, equation of Bernoulli, separation of variables, homogeneous equation and exact equation) and equations of higher order (fundamental system, reduction of order, variation of parameters, equations with constant coefficients and special right-hand side, Euler differential equation).
3. Metric spaces - metric, norm, scalar product, neighborhood, interior and exterior points, boundary point, isolated and non-isolated point, boundary of set, completeness of space, Hilbert spaces. Orthogonal polynomials. Complete orthogonal systems.
4. Fourier series - expansion of functions into Fourier series, trigonometric Fourier series and their convergence.
5. Differential calculus of functions of several variables - limit, continuity, partial and directional derivative, gradient, total derivatives and tangent plane, Taylor series, elementary terms of vector analysis, Jacobi matrix.
6. Functions defined implicitly by one or several equations.
- Requirements:
- Syllabus of lectures:
- Syllabus of tutorials:
- Study Objective:
- Study materials:
-
Key references:
[1] M. L. Bittinger, D. J. Ellenbogen, S. J. Surgent: Calculus and Its Applications (11th Ed.), Pearson, 2015
[2] R. A. Adams, Calculus: A Complete Course, 1999
[3] J. E. Marsden, A. Tromba: Vector Calculus, W.H. Freeman, New York, 2013.
Recommneded references:
[4] J. Stewart: Multivariable Calculus, 8th Edition, Brooks Cole, 2015.
Media and tools: MATLAB
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Fyzikální inženýrství - Počítačová fyzika (PS)
- Aplikace informatiky v přírodních vědách (compulsory course in the program)
- Aplikované matematicko-stochastické metody (compulsory course in the program)
- Jaderné inženýrství - Aplikovaná fyzika ionizujícího záření (PS)
- Fyzikální inženýrství - Fyzikální inženýrství materiálů (PS)
- Fyzikální inženýrství - Fyzika plazmatu a termojaderné fúze (PS)
- Fyzikální inženýrství - Inženýrství pevných látek (PS)
- Jaderná a částicová fyzika (compulsory course in the program)
- Jaderné inženýrství - Jaderné reaktory (PS)
- Fyzikální inženýrství - Laserová technika a fotonika (PS)
- Kvantové technologie (compulsory course in the program)
- jaderné inženýrství - Radioaktivita v životním prostředí (PS)
- Vyřazování jaderných zařízení z provozu (compulsory course in the program)
- Physical Engineering - Computational physics (PS)
- Quantum Technologies (compulsory course in the program)
- Nuclear and Particle Physics (compulsory course in the program)