Essentials of High School Course 1
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
00MAM1 | Z | 1 | 0+1 | Czech |
- Course guarantor:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Physics
- Synopsis:
-
Students are introduced to mathematical concepts and methods used in the introductory physics course.
- Requirements:
-
No prerequisities.
- Syllabus of lectures:
-
Coordinate systems, position (2D, 3D) (c.s. Cartesian, cylindrical, spherical,..), description of curves (conic,..). Translation, rotation around an axis.
Einstein summation convention, linear transformations, orthogonal transformations, matrices, operations with rows and columns of matrices, determinants, lin. vect. space (the existence of solutions, permittivity, permeability., flexibility, strength ...), eigenvectors, eigenvalues, matrix diagonalization, quadratic forms (moment of inertia)
Scalars - vectors - tensors, additive - the non-additive quantity, size of units, field scalar x vector. Points, vectors, forms and operators. Scalar and vector products.
Differential calculus: total, partial derivatives, curve length, curvature. Derivatives of elementary functions, derivative of product and composite functions. Functions of several variables, differential. (speed, acceleration).
Introduction to integral calculus, Rieman integral, geometric and physical meaning. Differential equations (differential eq. - numerical solution)
Approximate solutions, series, limits, approximation of functions, Taylor expansion of function (approximation for the general potential, LHO)
Complex numbers, the Euler's formula, the Moivre's formula (oscillations, ..)
The geometry of curves - the distance, tangent vector, normal, osculating circle, the radius of curvature. Description of the area, interior space coordinates, normal. (normal and tangential acceleration)
Vector field: differential operator nabla, Laplace operator, operations with operators Gauss., Stokes. theorem, geometric meaning (potential energy, conservative force, work around a closed curve)
Basis: 2D 3D ND Continuous, Fourier Transform
Mechanics of continuous media, systems of partial differential equations (continuity equation, equation, perturbation, perturbations, dispersion relations, ..)
Functional, strength, other ways to determine the trajectory, the calculus of variations
Statistics, probability distribution function
- Syllabus of tutorials:
-
Coordinate systems, position (2D, 3D) (c.s. Cartesian, cylindrical, spherical,..), description of curves (conic,..). Translation, rotation around an axis.
Einstein summation convention, linear transformations, orthogonal transformations, matrices, operations with rows and columns of matrices, determinants, lin. vect. space (the existence of solutions, permittivity, permeability., flexibility, strength ...), eigenvectors, eigenvalues, matrix diagonalization, quadratic forms (moment of inertia)
Scalars - vectors - tensors, additive - the non-additive quantity, size of units, field scalar x vector. Points, vectors, forms and operators. Scalar and vector products.
Differential calculus: total, partial derivatives, curve length, curvature. Derivatives of elementary functions, derivative of product and composite functions. Functions of several variables, differential. (speed, acceleration).
Introduction to integral calculus, Rieman integral, geometric and physical meaning. Differential equations (differential eq. - numerical solution)
Approximate solutions, series, limits, approximation of functions, Taylor expansion of function (approximation for the general potential, LHO)
Complex numbers, the Euler's formula, the Moivre's formula (oscillations, ..)
The geometry of curves - the distance, tangent vector, normal, osculating circle, the radius of curvature. Description of the area, interior space coordinates, normal. (normal and tangential acceleration)
Vector field: differential operator nabla, Laplace operator, operations with operators Gauss., Stokes. theorem, geometric meaning (potential energy, conservative force, work around a closed curve)
Basis: 2D 3D ND Continuous, Fourier Transform
Mechanics of continuous media, systems of partial differential equations (continuity equation, equation, perturbation, perturbations, dispersion relations, ..)
Functional, strength, other ways to determine the trajectory, the calculus of variations
Statistics, probability distribution function
- Study Objective:
-
Knowledge: learn the basic procedures for solving of simple physical problems
Abilities: applying of new abstract concepts on the description and solution of real physical situations and phenomena
- Study materials:
-
Povinná literatura: [1] Kvasnica J.: Matematický aparát fyziky, Academia, Praha, 1989, 1997
Doporučená literatura: [2] Mathematical Physics, Sadri Hassani, Springer 2000, ISBN 978-0-387-98579-4
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Fyzikální inženýrství - Počítačová fyzika (elective course)
- Aplikovaná algebra a analýza (elective course)
- Aplikace informatiky v přírodních vědách (elective course)
- Aplikované matematicko-stochastické metody (elective course)
- Jaderné inženýrství - Aplikovaná fyzika ionizujícího záření (elective course)
- Aplikovaná informatika (elective course)
- Fyzikální inženýrství - Fyzikální inženýrství materiálů (elective course)
- Fyzikální inženýrství - Fyzika plazmatu a termojaderné fúze (elective course)
- Fyzikální inženýrství - Inženýrství pevných látek (elective course)
- Jaderná a částicová fyzika (elective course)
- Jaderná chemie (elective course)
- Jaderné inženýrství - Jaderné reaktory (elective course)
- Fyzikální inženýrství - Laserová technika a fotonika (elective course)
- Matematické inženýrství - Matematická fyzika (elective course)
- Matematické inženýrství - Matematická informatika (elective course)
- Matematické inženýrství - Matematické modelování (elective course)
- Kvantové technologie (elective course)
- Radiologická technika (elective course)
- jaderné inženýrství - Radioaktivita v životním prostředí (elective course)
- Vyřazování jaderných zařízení z provozu (elective course)
- Physical Engineering - Computational physics (elective course)
- Quantum Technologies (elective course)
- Nuclear and Particle Physics (elective course)
- Physical Engineering - Physical Engineering od Materials (elective course)
- Mathematical Engineering - Mathematical Physics (elective course)
- Physical Engineering - Plasma Physics and Thermonuclear Fusion (elective course)