Theoretical Physics 2
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
02TEF2 | Z,ZK | 4 | 2+2 | Czech |
- Vztahy:
- In order to register for the course 02TEF2, the student must have successfully completed in previous semesters the required number of courses in the group PREREKKF1.
- Garant předmětu:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Physics
- Synopsis:
-
Tensors and transformations in physics. Mechanics of point mass, rigid body and continuum. The special theory of relativity: relativistic mechanics and classical field theory in the Minkowski space-time. Classical electrodynamics: Maxwell's equations in the Minkowski space-time, electromagnetic waves in dielectric media, electromagnetic radiation in the dipole approximation.
- Requirements:
-
02TEF1, 02ELMA
- Syllabus of lectures:
-
1. Physical quantities, units, Tensor calculus, operations with tensors, transformation of tensor components
2. Tensor product, invariant tensors, second order tensors, metric tensor, covariant and contravariant components, orientation, pseudo-tensors
3. Affine space, rectilinear coordinates, curvilinear coordinates, symmetry of affine space, affine group, Tensor fields: their transformations and symmetries, Newton's absolute time and space
4. Newtonian mechanics, Euclidean affine space, 1st Newton's law, inertial reference frame, Galilei's principle of relativity, Galilei's group of transformations, 2nd Newton's law in non-inertial reference frame, angular velocity pseudovector
5. Rigid body mechanics, moment of inertia tensor, rigid body motion, Euler's equations, Euler's angles, top and its motion
6. Continuum mechanics, surface and body forces, stress tensor, equation of motion for continuum
7. Euler's equations (fluid dynamic), elastic continuum, strain tensor, Hooke's law, Lamé's equation
8. Special relativity, Lorentz transformations, interval, Minkowski spacetime, Lorentz group, Poincaré group
9. Relativistic generalization of Newton's equation of motion, four-momentum, relativistic energy, particle collisions and decays, Lagrange and Hamiltonian functions for a charged relativistic particle
10. Maxwell's equations, continuity equations, scalar and vector potential, calibration transformation, Lorenz calibration condition
11. Electrodynamics equations in Minkowski spacetime, electromagnetic field tensor, Lorentz four-force, relativistic invariants of elmag. field
12. Lagrangian formalism in field theory, Hamilton's principle for fields, equation of motion for fields, Action for a system of charged particles and elmag. field, Conservation laws in field theory, conserved 4-current
13. Noether's theorem for fields, canonical energy-momentum tensor, symmetrical energy-momentum tensor
- Syllabus of tutorials:
-
Solving problems to illustrate the theory from the lecture
- Study Objective:
-
Knowledge:
Learn the basics of tensor calculus. Learn about the space on which Newtonian mechanics (Euclidean affine space) and special relativity (Minkowski spacetime) take place. Learn about groups of transformations and their role in physics: Galilei group (Galilei's principle of relativity), Lorentz group (Einstein's principle of relativity).
Apply knowledge of the tensor calculus to describe rigid body motion (moment of inertia tensor), the continuum (stress tensor and strain tensor), the electromagnetic field (electromagnetic field tensor, energy and momentum tensor).
Learn the basics of the Lagrangian formalism in classical field theory and apply them to the description of the electromagnetic field in Minkowski spacetime. This is the second part of the classical theoretical physics course at FNSPE.
Skills:
Application of methods of theoretical physics to solve concrete examples.
- Study materials:
-
Key references:
[1] H. Goldstein, C. P. Poole, J. Safko: Classical Mechanics, Pearson Education; 3rd edition, 2011
[2] E. C. G. Sudarshan, N. Mukunda: Classical Dynamics: A Modern Perspective, World Scientific; Reprint edition, 2015
[3] D. J. Griffiths: Introduction to Electrodynamics, Cambridge University Press; 4 edition, 2017.
Recommended references:
[4] G. Joos, I. Freeman: Theoretical Physics, Courier Corp. 2013.
[5] J. D. Jackson: Classical Electrodynamics, Wiley, New York, 1962. (available in the library of FJFI ČVUT)
[6] L. D. Landau, E. M. Lifšic, Course of Theoretical physics, Elsevier, 2013.
- Note:
- Further information:
- https://physics.fjfi.cvut.cz/index.php/cs/studium/predmety-na-kf/02tef12-teoreticka-fyzika-1-a-2
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- BS Matematické inženýrství - Matematické modelování (compulsory course of the specialization, elective course)
- BS Matematické inženýrství - Matematická fyzika (compulsory course of the specialization, elective course)
- BS Matematické inženýrství - Aplikované matematicko-stochastické metody (compulsory course of the specialization, elective course)
- BS Informatická fyzika (compulsory course of the specialization, elective course)
- BS Aplikace softwarového inženýrství (elective course)
- BS Aplikovaná informatika (elective course)
- BS jaderné inženýrství B (compulsory course of the specialization, elective course)
- BS Jaderné inženýrství C (elective course)
- BS Dozimetrie a aplikace ionizujícího záření (compulsory course of the specialization, elective course)
- BS Experimentální jaderná a částicová fyzika (compulsory course of the specialization, elective course)
- BS Inženýrství pevných látek (compulsory course of the specialization, elective course)
- BS Diagnostika materiálů (compulsory course of the specialization, elective course)
- BS Fyzika a technika termojaderné fúze (compulsory course of the specialization, elective course)
- BS Fyzikální elektronika (compulsory course of the specialization, elective course)
- BS Jaderná chemie (elective course)
- Fyzikální inženýrství - Počítačová fyzika (PS)
- Aplikovaná algebra a analýza (compulsory course in the program)
- Fyzikální inženýrství - Fyzika plazmatu a termojaderné fúze (elective course)
- Fyzikální inženýrství - Inženýrství pevných látek (PS)
- Jaderná a částicová fyzika (compulsory course in the program)
- Fyzikální inženýrství - Laserová technika a fotonika (PS)
- Matematické inženýrství - Matematická fyzika (PS)
- Matematické inženýrství - Matematická informatika (elective course)
- Kvantové technologie (compulsory course in the program)
- Physical Engineering - Computational physics (PS)
- Quantum Technologies (compulsory course in the program)
- Nuclear and Particle Physics (compulsory course in the program)