Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

Elections

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
NI-VOL Z,ZK 5 2P+1C Czech
Course guarantor:
Dušan Knop
Lecturer:
Dušan Knop
Tutor:
Šimon Schierreich
Supervisor:
Department of Theoretical Computer Science
Synopsis:

We will cover the basics of (committee) elections and, in general, opinion aggregation.

Requirements:

Předpokládáme, že student ovládá základní znalosti algoritmizace (které si mohl osvojit například v předmětu BI-AG1: Algoritmy a grafy I) a teorie složitosti (BI-AAG: Automaty a gramatiky). Výhodou je, pokud student absolvoval kurz NI-CPX, ale není podmínkou.

Syllabus of lectures:

1) motivation & single winner rules

2) single winner rules and their properties

3) Impossibility Theorems I

4) Strategic behaviour & manipulation in voting

5) Impossibility Theorems II

6) Domain restriction in voting

7) Computational complexity of Winner determination

8) Possible / Necessary Winner

9) Referenda

10) Committee Election I

11) Committee Election II

12) Liquid Democracy

Syllabus of tutorials:

1) motivation & single winner rules, single winner rules and their properties

2) Impossibility Theorems I, Strategic behaviour & manipulation in voting

3) Impossibility Theorems II, Domain restriction in voting

4) Computational complexity of Winner determination, Possible / Necessary Winner

5) Referenda, Committee Election I

6) Committee Election II, Liquid Democracy

Study Objective:

Be familiar with opinion aggregation and know winner-determination rules and their properties.

Study materials:

Handbook of Computational Social Choice. Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia (eds.). Dostupné online z http://www.cambridge.org/download_file/951600

E. Elkind, P. Faliszewski, P. Skowron, and A. Slinko. Properties of Multiwinner Voting Rules. Social Choice and Welfare, 48(3): 599-632, 2017.

V. Conitzer, T. Sandholm, and J. Lang. When are Elections with Few Candidates Hard to Manipulate? Journal of the ACM, 54(3), Article 14, 2007

A.D. Taylor. The Manipulability of Voting Systems. The American Mathematical Monthly, 109(4):321-337, 2002.

E. Edith, M. Lackner, and D. Peters. Preference Restrictions in Computational Social Choice: A Survey. 2022.

Note:
Further information:
https://courses.fit.cvut.cz/NI-VOL/
Time-table for winter semester 2024/2025:
Time-table is not available yet
Time-table for summer semester 2024/2025:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
Tue
roomTH:A-1247
Knop D.
11:00–12:30
(lecture parallel1)
Thákurova 7 (budova FSv)
roomTH:A-1247
Schierreich Š.
12:45–14:15
EVEN WEEK

(lecture parallel1
parallel nr.101)

Thákurova 7 (budova FSv)
Wed
Thu
Fri
The course is a part of the following study plans:
Data valid to 2025-01-21
For updated information see http://bilakniha.cvut.cz/en/predmet7428106.html