Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

Mathematical Methods for Data Analysis

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
11MMAD-E Z,ZK 6 3P+3C English
Course guarantor:
Magdalena Hykšová, Ivan Nagy
Lecturer:
Magdalena Hykšová, Ivan Nagy
Tutor:
Magdalena Hykšová, Ivan Nagy
Supervisor:
Department of Applied Mathematics
Synopsis:

Stocastic modelling, estimation, prediction, filtration, control, methods of data analysis: k-means, DBSCAN, naive Bayes, decision trees, support vector machine.

Requirements:

Probability, classical statistics, basics of algebra and calculus

Forms tests, semestral work (assesment), oral exam

Syllabus of lectures:
Syllabus of tutorials:
Study Objective:

To teach students the basic of dynamic statistic, i. e. analysis of data evolving in time. The accent is given to methods of clustering ans classification. Theoretical exposision of the subject is closely bound with a practical realization of the tasks in computer.

Study materials:

William M. Bolstad: Introduction to Bayesian Statistics, 2nd Edition. Willey, ISBN-13: 978-0470141151

P.Tan, M.Steinbach, V.Kumar: Introduction to Data Mining. Pearson Education, Inc., 2006. ISBN 0-321-32136-7

materiály na webu: http://staff.utia.cas.cz/suzdaleva/

Note:
Time-table for winter semester 2024/2025:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
roomHO:B-106
Nagy I.
13:15–15:45
(lecture parallel226)
Horská 3 (nová budova)
roomHO:B-106
Reznychenko T.
15:45–18:15
(parallel nr.226)
Horská 3 (nová budova)
Tue
Wed
Thu
Fri
Time-table for summer semester 2024/2025:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2025-01-16
For updated information see http://bilakniha.cvut.cz/en/predmet6820206.html