Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2022/2023
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Mathematical Analysis 1

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
BI-MA1.21 Z,ZK 5 2P+1R+1C Czech
The course cannot be taken simultaneously with:
Elements of Calculus (BI-ZMA)
Garant předmětu:
Tomáš Kalvoda (O_o)
Lecturer:
Tomáš Kalvoda (O_o), Ivo Petr
Tutor:
Tomáš Kalvoda (O_o), Jan Legerský, Petr Olšák, Pavel Paták, Ivo Petr, Jitka Rybníčková, Jiřina Scholtzová, Jan Starý, Irena Šindelářová, Jan Valdman, Jaroslav Zhouf
Supervisor:
Department of Applied Mathematics
Synopsis:

We begin the course by introducing students to the set of real numbers and its properties, and we note its differences with the set of machine numbers. Then we study real sequences and real functions of a real variable. We gradually introduce the notions of limits of sequences and functions, continuous functions, and derivatives of functions. This theoretical foundation is then applied to root-finding problems (iterative method of bisection and Newton’s method), construction of cubic interpolation (spline), and formulation and solution of simple optimization problems (i.e., the issue of finding extrema of functions). The course is closed with the Landau’s asymptotic notation and methods of mathematical description of complexity of algorithms.

Requirements:

Knowledge of high school mathematics, basics of mathematical logic (BIE-DML.21), and BIE-LA1.21.

Syllabus of lectures:

1. Extended real number line: rational and irrational numbers, completeness axiom, neighborhood, infinity. Relation to machine numbers.

2. Basic properties of functions and sequences. Elementary functions (polynomials, trigonometric functions, exponential, and logarithm).

3. Limit of a sequence and limit of a function: definition, meaning, and illustrations.

4. Computation of limits: algebraic properties of limits, squeeze theorem, examples.

5. The continuity of a function, continuity of elementary functions, implications for root finding (the bisection method as an example of iterative numerical method).

6. The derivative of a function, geometric meaning, linearity of differentiation, product and quotient rule. Derivative of inverse function. Differentiation of elementary functions.

7. Newton’s method for root finding.

8. Cubic interpolation (splines). L’Hospital’s rule.

9. Lagrange’s mean value theorem, implications for monotony and convexity/concavity of functions.

10. Local extrema of functions. Sufficient conditions for their existence.

11. Analytical graph plotting: examples. The notion of an optimization problem.

12. Landau’s asymptotic notation.

13. Mathematical description of the complexity of algorithms.

Syllabus of tutorials:

This is an outline of proseminars and subsequent exercises.

1. Functions and sequences, basic properties.

2. Elementary functions (polynomials, trigonometric functions, exponential and logarithm).

3. Limits of sequences and functions.

4. Continuity of functions.

5. Derivative of a function.

6. Analytical graph sketching (monotonicity, local exrtrema, asymptotes, etc.).

Study Objective:
Study materials:

The course is equipped with a dedicated textbook. Additionaly one can consult the following publications.

1. Oberguggenberger M., Ostermann A. : Analysis for Computer Scientists. Springer, 2018. ISBN 978-0-85729-445-6.

2. Stewart J. : Calculus (8th Edition). Cengage Learning, 2015. ISBN 978-1285740621.

3. Bittinger M.L., Ellenbogen D.J., Surgent S.A. : Calculus and Its Applications (11th Edition). Pearson, 2015. ISBN 978-0321979391.

4. Kopáček J.: Matematická analýza nejen pro fyziky I, Matfyzpress, 2016, ISBN 978-80-7378-353-4

Note:
Further information:
https://courses.fit.cvut.cz/BI-MA1/
Time-table for winter semester 2022/2023:
Time-table is not available yet
Time-table for summer semester 2022/2023:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
roomT9:346
Valdman J.
09:15–10:00
(parallel nr.1)
Dejvice
NBFIT učebna
roomT9:105
Kalvoda T.
16:15–17:45
(lecture parallel1)
Dejvice
Posluchárna
roomT9:346
Valdman J.
10:00–10:45
(parallel nr.2)
Dejvice
NBFIT učebna
roomT9:346
Valdman J.
11:00–11:45
(parallel nr.3)
Dejvice
NBFIT učebna
roomT9:346
Valdman J.
11:45–12:30
(parallel nr.4)
Dejvice
NBFIT učebna
Tue
roomT9:302
Valdman J.
09:15–10:00
(parallel nr.5)
Dejvice
NBFIT učebna
roomT9:302
Valdman J.
10:00–10:45
(parallel nr.6)
Dejvice
NBFIT učebna
roomTH:A-942
Olšák P.
11:00–11:45
(parallel nr.9)
Thákurova 7 (FSv-budova A)
roomTH:A-942
Olšák P.
11:45–12:30
(parallel nr.10)
Thákurova 7 (FSv-budova A)
roomTH:A-942
Šindelářová I.
14:30–15:15
(parallel nr.11)
Thákurova 7 (FSv-budova A)
roomTH:A-942
Šindelářová I.
15:15–16:00
(parallel nr.12)
Thákurova 7 (FSv-budova A)
roomTH:A-942
Šindelářová I.
16:15–17:00
(parallel nr.19)
Thákurova 7 (FSv-budova A)
roomTH:A-942
Olšák P.
09:15–10:00
(parallel nr.7)
Thákurova 7 (FSv-budova A)
roomTH:A-942
Olšák P.
10:00–10:45
(parallel nr.8)
Thákurova 7 (FSv-budova A)
roomT9:302
Rybníčková J.
12:45–13:30
(parallel nr.17)
Dejvice
NBFIT učebna
roomT9:302
Rybníčková J.
13:30–14:15
(parallel nr.18)
Dejvice
NBFIT učebna
roomT9:105
Petr I.
09:15–10:45
(lecture parallel2)
Dejvice
Posluchárna
roomT9:302
Rybníčková J.
11:45–12:30
(parallel nr.20)
Dejvice
NBFIT učebna
Wed
roomFIT-DIST01
Kalvoda T.
09:15–10:45
ODD WEEK

(lecture parallel1)
Distanční přes internet
virtuální distanční FIT-DIST01
roomT9:347
Zhouf J.
11:00–11:45
(parallel nr.15)
Dejvice
NBFIT učebna
roomT9:347
Zhouf J.
11:45–12:30
(parallel nr.16)
Dejvice
NBFIT učebna
roomT9:347
Zhouf J.
09:15–10:00
(parallel nr.13)
Dejvice
NBFIT učebna
roomT9:347
Zhouf J.
10:00–10:45
(parallel nr.14)
Dejvice
NBFIT učebna
roomFIT-DIST01
Petr I.
09:15–10:45
ODD WEEK

(lecture parallel2)
Distanční přes internet
virtuální distanční FIT-DIST01
Thu
roomT9:301
Paták P.
11:00–11:45
(parallel nr.21)
Dejvice
NBFIT učebna
roomTH:A-1442
Starý J.
13:30–14:15
(parallel nr.30)
Thákurova 7 (FSv-budova A)
roomT9:301
Paták P.
11:45–12:30
(parallel nr.22)
Dejvice
NBFIT učebna
roomTH:A-1442
Starý J.
12:45–13:30
(parallel nr.29)
Thákurova 7 (FSv-budova A)
roomTH:A-942
Scholtzová J.
13:30–14:15
(parallel nr.24)
Thákurova 7 (FSv-budova A)
roomTH:A-942
Scholtzová J.
12:45–13:30
(parallel nr.23)
Thákurova 7 (FSv-budova A)
Fri
roomT9:347
Paták P.
09:15–10:00
(parallel nr.25)
Dejvice
NBFIT učebna
roomT9:347
Paták P.
10:00–10:45
(parallel nr.26)
Dejvice
NBFIT učebna
roomT9:347
Paták P.
11:00–11:45
(parallel nr.27)
Dejvice
NBFIT učebna
roomT9:347
Paták P.
11:45–12:30
(parallel nr.28)
Dejvice
NBFIT učebna
roomT9:302
Scholtzová J.
11:00–11:45
(parallel nr.31)
Dejvice
NBFIT učebna
The course is a part of the following study plans:
Data valid to 2023-03-22
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet6535606.html