Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025
NOTICE: Study plans for the following academic year are available.

Linear Algebra 1

Display time-table
Code Completion Credits Range Language
BI-LA1.21 Z,ZK 5 2P+1R+1C Czech
Relations:
It is not possible to register for the course BI-LA1.21 if the student is concurrently registered for or has already completed the course BI-LIN (mutually exclusive courses).
The requirement for course BI-LA1.21 can be fulfilled by substitution with the course BI-LIN.
It is not possible to register for the course BI-LA1.21 if the student is concurrently registered for or has previously completed the course BI-LIN (mutually exclusive courses).
Course guarantor:
Karel Klouda
Lecturer:
Luděk Kleprlík, Karel Klouda, Jakub Krásenský
Tutor:
Daniel Dombek, Luděk Kleprlík, Karel Klouda, Jakub Krásenský, Marta Nollová, Hanka Řada, Jan Starý, Lucie Strmisková, Irena Šindelářová
Supervisor:
Department of Applied Mathematics
Synopsis:

We will introduce students to the basic concepts of linear algebra, such as vectors, matrices, vector spaces. We will define vector spaces over the field of real and complex numbers and also over finite fields. We will present the concepts of basis and dimension and learn to solve systems of linear equations using the Gaussian elimination method (GEM) and show the connection with linear manifolds. We define the regularity of matrices and learn to find their inversions using GEM. We will also learn to find eigenvalues and eigenvectors of a matrix. We will also demonstrate some applications of these concepts in computer science.

Requirements:

The ability to think mathematically and knowledge of a high school mathematics.

Syllabus of lectures:

1. Fields, vectors, and vector spaces.

2. Matrices, matrix operations and matrix notation of a system of linear equations.

3. Solving systems of linear equations using Gauss elimination method.

4. Linear (in)dependence of vectors, linear span, subspace.

5. Base, dimension of a vector (sub)space.

6. Matrix rank, regularity of a matrix, inverse of matrix and its computation.

7. Frobenius theorem on solutions of a system of linear equations.

9. Linear manifolds, parametric and non-parametric equations of linear manifolds.

10. Permutations, determinant of a matrix.

11. [2] Eigenvalues and eigenvectors of matrices.

13. Diagonalization of matrices.

Syllabus of tutorials:

1. Matrices, matrix operations. Solving systems of linear equations using Gauss elimination method.

2. Linear (in)dependence of vectors, linear span, subspace. Base, dimension of a vector (sub)space.

3. Matrix rank, regularity of a matrix, inverse of matrix and its computation.

4. Frobenius theorem on solutions of a system of linear equations.

5. Linear manifolds, parametric and non-parametric equations of linear manifolds. Determinant of a matrix.

6. Eigenvalues and eigenvectors of matrices. Diagonalization of matrices.

Study Objective:
Study materials:

1 Strang G. : Introduction to Linear Algebra (5th Edition). Wellesley-Cambridge Press, 2016. ISBN 978-0980232776.

2. Lay D.C., Lay S.R., McDonald J.J. : Linear Algebra and Its Applications (5th Edition). Pearson, 2015. ISBN 978-0321982384.

3. Axler S. : Linear Algebra Done Right (3rd Edition). Springer, 2014. ISBN 978-3319110790.

4. Klein P. N. : Coding the Matrix: Linear Algebra through Applications to Computer Science. Newtonian Press, 2013. ISBN 978-0615880990.

Note:

The course is presented in Czech.

Further information:
http://courses.fit.cvut.cz/BI-LA1
Time-table for winter semester 2024/2025:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
roomTH:A-1242
Starý J.
09:15–10:00
(parallel nr.1)
Thákurova 7 (budova FSv)
roomTH:A-1242
Starý J.
10:00–10:45
(parallel nr.2)
Thákurova 7 (budova FSv)
roomTH:A-1242
Starý J.
11:00–11:45
(parallel nr.3)
Thákurova 7 (budova FSv)
roomTH:A-1242
Starý J.
11:45–12:30
(parallel nr.4)
Thákurova 7 (budova FSv)
Tue
roomTH:A-1242
Kleprlík L.
11:00–11:45
(parallel nr.7)
Thákurova 7 (budova FSv)
roomT9:105
Kleprlík L.
18:00–19:30
(lecture parallel1)
Dejvice
roomTH:A-1242
Kleprlík L.
11:45–12:30
(parallel nr.8)
Thákurova 7 (budova FSv)
roomT9:302
Kleprlík L.
16:15–17:00
(parallel nr.9)
Dejvice
roomT9:302
Kleprlík L.
17:00–17:45
(parallel nr.10)
Dejvice
Wed
roomTH:A-1247
Šindelářová I.
09:15–10:00
(parallel nr.11)
Thákurova 7 (budova FSv)
roomTH:A-1247
Šindelářová I.
10:00–10:45
(parallel nr.12)
Thákurova 7 (budova FSv)
roomT9:302
Kleprlík L.
11:00–11:45
(parallel nr.13)
Dejvice
roomT9:302
Kleprlík L.
11:45–12:30
(parallel nr.14)
Dejvice
roomT9:302
Šindelářová I.
12:45–13:30
(parallel nr.15)
Dejvice
roomT9:302
Šindelářová I.
13:30–14:15
(parallel nr.16)
Dejvice
roomTH:A-1442
Nollová M.
14:30–15:15
(parallel nr.17)
Thákurova 7 (budova FSv)
roomTH:A-1442
Nollová M.
15:15–16:00
(parallel nr.18)
Thákurova 7 (budova FSv)
roomTH:A-1442
Krásenský J.
16:15–17:00
(parallel nr.19)
Thákurova 7 (budova FSv)
roomTH:A-1442
Krásenský J.
17:00–17:45
(parallel nr.20)
Thákurova 7 (budova FSv)
roomTH:A-1442
Krásenský J.
18:00–18:45
(parallel nr.21)
Thákurova 7 (budova FSv)
roomTH:A-1442
Krásenský J.
18:45–19:30
(parallel nr.22)
Thákurova 7 (budova FSv)
roomT9:105
Klouda K.
09:15–10:45
(lecture parallel2)
Dejvice
roomT9:155
Krásenský J.
11:00–12:30
(lecture parallel3)
Dejvice
Thu
roomTH:A-1247
Nollová M.
09:15–10:00
(parallel nr.23)
Thákurova 7 (budova FSv)
roomTH:A-1247
Nollová M.
10:00–10:45
(parallel nr.24)
Thákurova 7 (budova FSv)
roomTH:A-1242
Nollová M.
12:45–13:30
(parallel nr.25)
Thákurova 7 (budova FSv)
roomTH:A-1242
Nollová M.
13:30–14:15
(parallel nr.26)
Thákurova 7 (budova FSv)
roomTH:A-1242
Nollová M.
14:30–15:15
(parallel nr.27)
Thákurova 7 (budova FSv)
roomTH:A-1242
Nollová M.
15:15–16:00
(parallel nr.28)
Thákurova 7 (budova FSv)
Fri
roomTH:A-1242
Krásenský J.
09:15–10:00
(parallel nr.31)
Thákurova 7 (budova FSv)
roomTH:A-1242
Krásenský J.
10:00–10:45
(parallel nr.32)
Thákurova 7 (budova FSv)
roomTH:A-1242
Krásenský J.
11:00–11:45
(parallel nr.33)
Thákurova 7 (budova FSv)
roomTH:A-1242
Krásenský J.
11:45–12:30
(parallel nr.34)
Thákurova 7 (budova FSv)
Time-table for summer semester 2024/2025:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2025-04-06
For updated information see http://bilakniha.cvut.cz/en/predmet6533706.html