CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024

# Introduction to Curves and Surfaces

Code Completion Credits Range
02UKP1 Z 2 1P+1C
Garant předmětu:
Lecturer:
Tutor:
Supervisor:
Department of Physics
Synopsis:

The goal of the lecture is an introduction to the differential geometry of simple manifolds - curves and two-dimensional surfaces. The basic concepts for the curves are introduced Frenets formulae are explained. In the surface theory we introduce first and second fundamental forms and mean and Gaussian curvature. Essential part of the lecture are the examples calculated by students.

Requirements:
Syllabus of lectures:

Outline of the lecture:

1. Examples and definition of curves

2. Plane curves, natural equation of a curve

3. Space curves, curvature, torsion

4. Frenet formulas

5. Examples and definition of surfaces

6. The first fundamental form, lenght of a curve on the surface

7. Transformation properties of the first fundamental form

Outline of the exercises:

1. Curvature and length of the curve

2. Curvature and area of a surface

3. Metric tensor

Syllabus of tutorials:

Outline of the exercises:

1. Curvature and length of the curve

2. Curvature and area of a surface

3. Metric tensor

Study Objective:

Knowledge:

To provide the simplest examples of manifolds and their properties.

Acquired skills:

Solve mathematical problems defined on manifolds.

Study materials:

Key references:

[1] L. Hlavatý, Úvod do křivek a ploch (in Czech)

www.fjfi.cvut.cz &gt; katedra fyziky &gt; studentský servis &gt; Doprovod přednášek &gt; Úvod do křivek a ploch

Recommended references:

[2] B. Hostinský, Diferenciální geometrie křivek a ploch, Přírodovědecké nakladatelství v Praze, 1949 (in Czech)

[3] W. Kuehnel, Diferential Geometry, AMS2006

[4] T. Banchoff, S Lovett , Diferential Geometry of Curves and Surfaces, CRC Press 2016

Note:
Time-table for winter semester 2023/2024:
Time-table is not available yet
Time-table for summer semester 2023/2024:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2024-06-18
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet5965706.html