Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2022/2023
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Pattern Recognition and Machine Learning

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
BE5B33RPZ Z,ZK 6 2P+2C English
Corequisite:
The course cannot be taken simultaneously with:
Pattern Recognition and Machine Learning (A4B33RPZ)
Recognition and machine learning (B4B33RPZ)
The course is a substitute for:
Recognition and machine learning (B4B33RPZ)
Garant předmětu:
Jiří Matas
Lecturer:
Ondřej Drbohlav, Jiří Matas
Tutor:
Ondřej Drbohlav, Jiří Matas, Lukáš Neumann, Oleksandr Shekhovtsov, Jan Šochman
Supervisor:
Department of Cybernetics
Synopsis:

The basic formulations of the statistical decision problem are presented. The necessary knowledge about the (statistical) relationship between observations and classes of objects is acquired by learning on the raining set. The course covers both well-established and advanced classifier learning methods, as Perceptron, AdaBoost, Support Vector Machines, and Neural Nets.

Requirements:

Knowledge of linear algebra, mathematical analysis and

probability and statistics.

Syllabus of lectures:

1.The pattern recognition problem. Overview of the Course. Basic notions.

2.The Bayesian decision-making problem, i.e. minimization of expected loss.

3.Non-bayesian decision problems.

4.Parameter estimation. The maximum likelihood method.

5.The nearest neighbour classifier.

6.Linear classifiers. Perceptron learning.

7.The Adaboost method.

8.Learning as a quadratic optimization problem. SVM classifiers.

9.Feed-forward neural nets. The backpropagation algorithm.

10.Decision trees.

11.Logistic regression.

12.The EM (Expectation Maximization) algorithm.

13.Sequential decision-making (Wald´s sequential test).

14.Recap.

Syllabus of tutorials:

Students solve four or five pattern recognition problems, for instance a simplified version of OCR (optical character recognition), face detection or spam detection using either classical methods or trained classifiers.

1.Introduction to MATLAB and the STPR toolbox, a simple recognition experiment

2.The Bayes recognition problem

3.Non-bayesian problems I: the Neyman-Pearson problem.

4.Non-bayesian problems II: The minimax problem.

5.Maximum likelihood estimates.

6.Non-parametric estimates, Parzen windows.

7.Linear classifiers, the perceptron algorithm

8.Adaboost

9.Support Vector Machines I

10.Support Vector Machines II

11.EM algoritmus I

12.EM algoritmus II

13.Submission of reports. Discussion of results.

14.Submission of reports. Discussion of results.

Study Objective:

To teach the student to formalize statistical decision making problems, to use machine learning techniques and to solve pattern recognition problems with the most popular classifiers (SVM, AdaBoost, neural net, nearest neighbour).

Study materials:

1.Duda, Hart, Stork: Pattern Classification, 2001.

2.Bishop: Pattern Recognition and Machine Learning, 2006.

3.Schlesinger, Hlavac: Ten Lectures on Statistical and Structural Pattern Recognition, 2002.

Note:
Further information:
https://cw.fel.cvut.cz/wiki/courses/BE5B33RPZ
Time-table for winter semester 2022/2023:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
roomKN:E-301
Matas J.
Drbohlav O.

16:15–17:45
(lecture parallel1)
Karlovo nám.
Šrámkova posluchárna K9
room
Drbohlav O.
18:00–19:30
(lecture parallel1
parallel nr.103)

Tue
roomKN:E-127
Shekhovtsov O.
11:00–12:30
(lecture parallel1
parallel nr.102)

Karlovo nám.
Kotkova cvičebna K4
Wed
Thu
roomKN:E-132
Neumann L.
12:45–14:15
(lecture parallel1
parallel nr.101)

Karlovo nám.
Laboratoř PC
Fri
Time-table for summer semester 2022/2023:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2023-06-05
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet4358506.html