Calculus 1
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01MAN | Z | 4 | 4+4 | Czech |
- Relations:
- It is not possible to register for the course 01MAN if the student is concurrently registered for or has already completed the course 01MAT1 (mutually exclusive courses).
- It is not possible to register for the course 01MAN if the student is concurrently registered for or has previously completed the course 01MAT1 (mutually exclusive courses).
- The course 01MANZ can be graded only after the course 01MAN has been successfully completed.
- Course guarantor:
- Edita Pelantová, Pavel Strachota
- Lecturer:
- Miroslav Kolář, Edita Pelantová, Pavel Strachota
- Tutor:
- Maksym Dreval, Tomáš Hrdina, Miroslav Kolář, Filip Konopka, Jakub Kořenek, Filip Moučka, Edita Pelantová, Severin Pošta, Pavel Strachota
- Supervisor:
- Department of Mathematics
- Synopsis:
-
Basic calculus (real analysis, functions of one real variable, differential calculus).
- Requirements:
-
No prerequisities.
- Syllabus of lectures:
-
1. Basics of mathematical logic, equations and inequalities, goniometric functions, exponential and logarithmic functions, sums and products, induction.
2. Sets and mappings.
3. Real and complex sequence - limit, basic properties, limits of special sequences, number „e“ and exponential function, some elementary functions.
4. Limit and continuity of functions of one real variable - basic properties.
5. Derivative of functions - basic properties.
6. Basic theorems of differential calculus. 7. Constructing graphs of functions.
- Syllabus of tutorials:
-
1. Basic properties of functions and mappings.
2. Supremum, Infimum.
3. Limits of sequences.
4. Acculumation points.
5. Limits of real functions.
6. Continuity.
7. Derivative, graphs of real functions.
- Study Objective:
-
The goal of this course is to manage basic techniques of computing limits of sequences, limits of real functions of one real variable and of differential calculus.
- Study materials:
-
Recommended references:
[1] Apostol: Mathematical Analysis, Addison Wesley, 1974.
[2] W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, Mexico, 1980.
- Note:
- Time-table for winter semester 2024/2025:
-
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon Tue Wed Thu Fri - Time-table for summer semester 2024/2025:
- Time-table is not available yet
- The course is a part of the following study plans:
-
- Fyzikální inženýrství - Počítačová fyzika (PS)
- Aplikovaná algebra a analýza (compulsory course in the program)
- Aplikace informatiky v přírodních vědách (compulsory course in the program)
- Aplikované matematicko-stochastické metody (compulsory course in the program)
- Jaderné inženýrství - Aplikovaná fyzika ionizujícího záření (PS)
- Fyzikální inženýrství - Fyzikální inženýrství materiálů (PS)
- Fyzikální inženýrství - Fyzika plazmatu a termojaderné fúze (PS)
- Fyzikální inženýrství - Inženýrství pevných látek (PS)
- Jaderná a částicová fyzika (compulsory course in the program)
- Jaderné inženýrství - Jaderné reaktory (PS)
- Fyzikální inženýrství - Laserová technika a fotonika (PS)
- Matematické inženýrství - Matematická fyzika (PS)
- Matematické inženýrství - Matematická informatika (PS)
- Matematické inženýrství - Matematické modelování (PS)
- Kvantové technologie (compulsory course in the program)
- jaderné inženýrství - Radioaktivita v životním prostředí (PS)
- Vyřazování jaderných zařízení z provozu (compulsory course in the program)
- Physical Engineering - Computational physics (PS)
- Quantum Technologies (compulsory course in the program)
- Nuclear and Particle Physics (compulsory course in the program)
- Physical Engineering - Physical Engineering od Materials (PS)
- Mathematical Engineering - Mathematical Physics (PS)
- Physical Engineering - Plasma Physics and Thermonuclear Fusion (PS)