CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Code Completion Credits Range Language
17DEZ Z,ZK 3 2+1 Czech
Garant předmětu:
Lecturer:
Marcel Miglierini, Miloš Tichý
Tutor:
Marcel Miglierini, Miloš Tichý
Supervisor:
Department of Nuclear Reactors
Synopsis:

The course provides basic information on detection of ionizing radiation. Summary of basic knowledge of nuclear physics necessary to understand derived from parallel course 02ZJF is the content of the first lecture. The main part of the course contain information on sources of radiation and methods of radiation detection of neutrons. Spectroscopy is lectured similarly: all kinds of ionizing radiation with a special lecture on neutron spectroscopy. Emphasis is given on physical principles of detection and spectroscopy but appropriate detection technique and its set-up is provided in an appropriate detail. Last lecture as an introduction to laboratory exercises is devoted to theory of probability and mathematical statistics with emphasis on processing of experimental data because the course on theory of probability and mathematical statistics is no more in CV of nuclear engineering. Basics of writing of scientific article is provided also to make easier writing a laboratory protocol as first student scientific text. Laboratory exercise are rather important part of the course amounting about 2/3 of the time (5-6 tasks). Students are given a problem with prepared short description and task to measure some quantity(ies) and write a protocol as scientific text (an article). Exercise is carried out in groups of maximum 3 students; protocol is written individually.

Requirements:
Syllabus of lectures:

1. Introduction + Basic principles of nuclear physics + Radioactivity

. structure of nuclei, binding energy, models of nucleus, unstable nuclei

. stability of nuclei, radioactive decay law, radioactive decay - types of decay

. decay chains

. basic notions: activity, intensity, flux, fluence, countrate, dose, sensitivity, resolution, etc.

3. Interaction of radiation with matter:

. interaction of charged particles with matter, heavy and light charged particles

. interactions of photons with matter

. interactions of neutrons with matter (indicatively)

. principles of detection

. gas-filled detectors: ionizing chambers (compensated and non-compensated), proportional counters, GM counters

. scintillator counters, scintillators, photo-multiplying tubes

. semiconducting detectors

. special detectors: TLD, Cerenkov counters, Wilson and bubble chamber, photoemulsion, superconducting counters, spark and corona detectors

. principles of spectrometry

. preamplifier, amplifier, shaping of pulses, single channel analyser, multichannel analyser

. coincidence and anticoincidence layout, active and passive methods of shielding

. modular systems of spectrometric chains

6. Detection of neutrons

. principles of detection of neutrons

. main types of detectors of neutrons according to the used reaction, detection material, timing and purpose and their characteristics

- gas detectors

- scintillators

- semiconducting detectors

- diamond detectors

- self-powered detectors

- thermoluminiscence detectors

- solid state track detectors

. dose rate meters, dosimeters for neutrons

. instrumentation of energetic reactor and reactor VR-1

7. Spectrometry of neutrons

. methods and experimental equipment

- integral and differential spectrometer

- TOF spectrometer

- Methods based on response from charged particles from detection reactions

- threshold reactions

- neutron diffraction

. unfolding of neutron spectra spectra

. examples of the results

8. Uncertainty and elaboration of experimental data

. uncertainty and error, classification of uncertainties

. accuracy and precision

. Probability theory

- basic definitions

. mathematical statistics

- point and interval estimates

- tests of hypotheses

. Direct and indirect measurement

- multidimensional random quantities

- correlated and non-correlated quantities

- processing of an indirect measurement, interpretation of the results

- uncertainty of an indirect measurement, propagation of uncertainties

. practical consequences

- rounding

- composition of graphs

- background correction

Syllabus of tutorials:

2. Task 2: Determination of a working point (voltage) of a G-M detector and its utilization for determination of attenuation parameter of some materials

3. Task 3: Gamma spectrometry: efficiency and energy resolution of different types of detectors and energy calibration of a spectrometric chain and determination of an unknown source of radiation

4. Task 4: Range of alpha particles in the air (semiconducting detectors)

5. Task 5: Detectors of neutrons, basic setup and sensitivity

Study Objective:

Knowledge: Thorough overview on the methods of detection for all types of radioactive radiation including the necessary topics of nuclear physics and basic principles of statistical elaboration of the results.

Abilities: To provide an overview on the topic, to design detection methods suitable both for research tasks and for practical application of radiation sources.

Study materials:

1. Knoll, G. F.: Radiation_Detection_and_Measurement, John Wiley&amp;Sons Inc., 2000,

2. Leo, William R., Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, Berlin, Heidelberg, 1987

3. Murray, Raymond LeRoy: Nuclear energy : An introduction to the concepts, systems, and applications of nuclear processes, Elsevier Inc., 2009

4. Leo, William R., Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag, Berlin, Heidelberg, 1987

Note:
Time-table for winter semester 2023/2024:
Time-table is not available yet
Time-table for summer semester 2023/2024:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2024-05-29
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet3785206.html