Circuit Theory

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
A8B31CIR Z,ZK 8 4P+2S Czech
Garant předmětu:
Ivan Zemánek
Jiří Hospodka
Jiří Hospodka, Tomáš Kouba
Department of Circuit Theory

The subject AE8B31CIR is a complet systematic presentation of electrical circuit theory. It is based on general physical nature of electromagnetic effects, an electric circuit is presented as a special quasistationary case of electromagnetic field. It defines basic circuit quantities (voltage, current) and basic circuit elements modeling all kinds of actual energy interactions. The subject is specifically oriented on linear electrical circuit (analogue LTI systems), it presents basic priciples and theorems of circuit theory, and analysis methods of linear circuits working in steady and transient states (modes), respectively. The time domain and frequency domain analysis is strictly differentiated. "System? characterization is applied on circuit transfer properties analysis, stability analysis, and feedback theory. At the end the subject deals with basis of discrete LTI systems theory.


Solid knowledge of mathematics, physics and electromagnetic field theory specified in subjects AE8B01LAG, AE8B01MC1, AE8B01MCM, AE8B01DEN, AE8B01MCT, AE8B02PH1, AE8B02PH2, AE8B17EMT

Syllabus of lectures:

1. Recapitulation - circuit quantities (voltage, current, instantaneous power, work of voltage and current), circuit elements (resistor, capacitor, inductor, independent voltage source, independent current source), elementary analysis methods. New terms - coupling circuit elements (coupled inductors, controlled sources).

2. Electric circuit topology, general analysis methods (nodal voltage analysis, loop current analysis).

3. Electric circuits in transient and steady states. Linear circuit analysis in time and frequency domain (Steinmetz transform, Fourier series, Fourier transform, Laplace transform).

4. Stationary steady state (SSS) in linear circuits. General analysis methods of linear resistive circuits, matrix expression of circuit equations..

5. Harmonic (sinusoidal) steady state (HSS),, symbolic complex method (Steinmetz transform), phasors, imitances, transfer functions. Elementary and general analysis methods in HSS, phasor diagrams, power, power matching, resonance.

6. Three-phase systems.

7. Periodic non-sinusoidal steady state (PNSS), Fourier series, spectrum of periodic signal, analysis of linear circuits in PNSS, effective (RMS) value, power of periodic voltage and current.

8. Transients in linear circuits. Analysis of 1st and 2nd order transients in time domain.

9. Operational analysis of transient in linear circuits.

10. Transient characteristics (responses), unit impulse and unit step responses, convolution, stability.

11. Frequency characteristic (responses).

12. Feedback (FB), negative and positive FB, Nyquist characteristic, stability, types of FB, FB influences on selected circuit parameters.

13. Operational amplifier, linear operational networks (inverting and non-inverting voltage amplifier, voltage follower, adding amplifier, integrator, differentiator, voltage-current converter).

14. Basis of discrete LTI systems theory. Coherences and differences between discrete LTI systems and continuous LTI systems (classic analogue circuits).

Syllabus of tutorials:

Sylabus of exercises are thematically identical with the sylabus of lectures. Themes of exercises immediately follow the corresponding lecture ones.

Study Objective:

The goal of study of this subject is general systematic and fundamental presentation of main principles, theorems and laws of linear electrical circuit theory, and general analysis methods of linear circuits working in steady and transient states (modes), in time domain and frequency domain, respectively, giving the possibilities for detailed or system characterization. The convenient bonus is basis of discrete LTI systems theory presentation.

Study materials:

[1] Mikulec M., Havlíček V.: Basic Circuit Theory, ČVUT, 2008.

[2] Mikulec M.: Basic Circuit Theory I, ČVUT, 1994.

[3] Mikulec M., Havlíček V.: Basic Circuit Theory II, ČVUT, 1996.

[4] Havlíček V., Čmejla, R.: Basic Circuit Theory I - Exercises, ČVUT, 1996.

[5] Havlíček V., Čmejla, R., Zemánek, I.: Basic Circuit Theory II - Exercises, ČVUT, 1997.

[6] R. L. Boylestad: Introductory Circuit Analysis, Merril Publishing Company, 1987.

[7] D. E. Scott: An Introduction to Circuit Analysis, McGraw-Hill Book Company, 1987.

[8] J, D. Irwin, R. M. Nelms: Basic Engineering Circuit Analysis. 9th ed., Wiley, 2008.

[9] T. L. Floyd,: Principles of Electric Circuits. Conventional Current Version, 8th ed. Pearsen Prentice Hall.

[10] Ch. K. Alexander, M. N. O. Sadiku: Fundamentals of Electric Circuits. McGraw-Hill.

[11] Nilsson: Electric Circuits. Prentice Hall, 2004.

[12] Sedra, Smith: Microelectronic circuits, Oxford Univ Press 2007

[13] Nilsson: Electric circuits, Prentice Hall 2004

[14] V. Havlíček, M. Pokorný, I. Zemánek: Elektrické obvody 1, Vydavatelství ČVUT, 2005.

[15] V. Havlíček, I. Zemánek: Elektrické obvody 2, Vydavatelství ČVUT, 2008.

[16] R. Čmejla, V. Havlíček, I. Zemánek: Základy teorie elektrických obvodů 1 - cvičení, Vydavatelství ČVUT, 2009.

[17] R. Čmejla, V. Havlíček, I. Zemánek: Základy teorie elektrických obvodů 2 - cvičení, Vydavatelství ČVUT, 2007.

Further information:
Time-table for winter semester 2023/2024:
Time-table is not available yet
Time-table for summer semester 2023/2024:

(lecture parallel1
parallel nr.101)

Laborator K413A

(lecture parallel1
parallel nr.101)

Laborator K413A
Hospodka J.
(lecture parallel1)
Laborator K413A
Hospodka J.
(lecture parallel1)
Laborator K413A
The course is a part of the following study plans:
Data valid to 2024-06-24
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet2668506.html