CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

# Digital and Analog Circuits

The course is not on the list Without time-table
Code Completion Credits Range Language
BIE-CAO Z,ZK 5 2P+2C English
Garant předmětu:
Lecturer:
Tutor:
Supervisor:
Department of Digital Design
Synopsis:

Students get the fundamental understanding of technologies underlying electronic digital systems. They understand the basic theoretical models and principles of functionality of transistors, gates, circuits, and conductors. They are able to design simple circuits and evaluate circuit parameters. They understand the differences between analog and digital modes of electronic devices.

Requirements:

High-school level knowledge of mathematics and physics

Syllabus of lectures:

1st Vs. concentrated. distributed parameters, transitions between them. State variables and parameters of the circuit (resistance, capacitance, inductance). Current and voltage connections, basic circuit equations.

2nd Alternative power source components or voltage, circuit equations. Serial and parallel connection of identical elements. Numerical solutions to equations describing the electrical circuits.

3rd Circuit equations, nodal voltages and loop currents. DC circuits.

4th Digital abstraction, logic Clustering, Clustering function (negation, NAND, NOR, AND, OR, sum-of-products), switch-type N and type P, the implementation of logic gates using switches and N-type switch-type P.

5th Semiconductors properties. Basic nonlinear elements occurring in electrical circuits (diodes, ...), characteristics linearization.

6th MOSFET. MOSFET as an amplifier. MOSFET as a switch.

7th Structures of logic elements (CMOS technology, physical structure, logic gates, multiplexers, tri-state drivers, level flip-flops, edge flip-flops)

8th Harmonic steady state with a single frequency transmission.

9th Resonant circuits; equation, time courses of variables, including performance. Measurement and display of debugging.

10th Homogeneous lines (different approaches, the primary examples of endings, etc.). The signals in digital systems. Symmetrical lines, asymmetrical lines

11th Performance. The median and rms. Reactive power. Energy and performance in digital systems (energy and power in a simple RC circuit, power consumption in logic gate, NMOS logic, CMOS logic)

12th Resource management and magnetically coupled circuits, transformers

13th Operational amplifiers, comparators (qualities simple circuit with opamps, input and output resistance, examples of RC circuits withopamps, opamps, in saturation, positive feedback.

Syllabus of tutorials:

1. Introduction to SW Mathematica, solving of various types of equations.

2. First-order transients; oscilloscope, numerical mathematics, NDSolve.

3. Complex circuit: measurements, calculation.

4. DC circuits; digital abstraction.

5. Semiconductors.

6. Transistor.

7. Structures of logic elements.

8. Single-frequency sinusoidal steady state, inverse task (determination of circuit parameters by measurement and calculation).

9. Resonant circuits: equations, responses. Measurement and tuning. Fourier (numerical and experimental tasks).

10. Homogeneous transmission lines (approaches, basic examples of termination etc.), reflections, adjustment. Signal delays.

11. Power. Mean and effective value. Reactive power.

12. Energy and power in digital systems.

13. Operational amplifiers.

Study Objective:

The aim of the module is to teach the fundamentals of digital and analog circuits, as well as basic methods of analyzing them. Students learn what do computer structures look like at the lowest level. They are introduced to the function of a transistor. They will know why processors generate heat, why is cooling necessary, and how to reduce the consumption; what are the limits to the maximum operating frequency and how to raise them; why does a computer bus need to be terminated, what happens if it is not; what does (in principle) a computer power supply look like. In the labs, students will perform measurements on actual circuits. They will also design circuits and verify some of their designs hans-on. Mathematica software is used to solve problems.

Study materials:
Note:
Further information:
https://moodle-vyuka.cvut.cz/course/search.php?search=BIE-CAO
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2024-09-10
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet1449806.html