Heat and Molecular Physics
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
02TER | Z,ZK | 4 | 2+2 | Czech |
- Course guarantor:
- Petr Jizba
- Lecturer:
- Filip Petrásek
- Tutor:
- Tereza Lehečková, Petr Novotný, Magdalena Parýzková, Filip Petrásek, Stanislav Skoupý
- Supervisor:
- Department of Physics
- Synopsis:
-
Thermal expansion of materials, heat transfer; stationary and non-stationary heat conduction, heat transfer and penetration; 1st and 2nd thermodynamic principle, ideal and real gas, entropy; non-chemical systems: dielectric and magnetic materials; Maxwell relations and thermodynamic potentials; kinetic theory: Maxwell's velocity distribution,equipartition theorem.
- Requirements:
-
knowledge of differential and integral calculus on the level of basic undergraduate courses
- Syllabus of lectures:
-
1. Thermal linear, plane and volume expansions. Thermal expansivity of gas.
2. Transport of heat: conduction, convection and radiation. Stationary conduction in thermally isolated and unisolatedsystems.
3. Non-stationary conduction. Common heat conduction equation.
4. Surface heat transfer.
5. The zeroth and first law of thermodynamics. Thermodynamic process in ideal gas. The second law of thermodynamics. Carnot cycle. The Clausius unequality.
6. Entropy of homogeneous chemical system. The Gibbs paradoxon.
7. Common temperature, thermodynamic temperature.
8. Thermodymamic variables of non-chemical systems.
9. The heat capacity KV and Kp.
10. The third law of thermodynamics.
11. The equipartition theorem and its consequences.
12. The Maxwell law of distribution of molecular velocities.
13. The van der Waals gas. The Joule and Thomson experiment. Condensation of gases.
- Syllabus of tutorials:
-
Solving problems to illustrate the theory from the lecture
- Study Objective:
-
knowledge:
knowledge of basic thermodynamic phenomena in chemical (and some non-chemical) systems.
abilities:
application of the mathematical and conceptual formalism of thermodynamics on concrete practical examples from physical and engineering praxis
- Study materials:
-
Key references:
[1] R. F. Sekerka, Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers, Elsevier, 2015
[2] A. Rex and C.B.P. Finn: Finn's Thermal Physics, 3rd Edition, CRC Press, Boca Raton, 2017
Recommended references:
[3] D.V. Schroeder, Introduction to Thermal Physics, Pearson Education, 2013
- Note:
- Time-table for winter semester 2024/2025:
- Time-table is not available yet
- Time-table for summer semester 2024/2025:
- Time-table is not available yet
- The course is a part of the following study plans:
-
- Fyzikální inženýrství - Počítačová fyzika (PS)
- Aplikované matematicko-stochastické metody (elective course)
- Jaderné inženýrství - Aplikovaná fyzika ionizujícího záření (PS)
- Fyzikální inženýrství - Fyzikální inženýrství materiálů (PS)
- Fyzikální inženýrství - Fyzika plazmatu a termojaderné fúze (PS)
- Fyzikální inženýrství - Inženýrství pevných látek (PS)
- Jaderná a částicová fyzika (compulsory course in the program)
- Jaderné inženýrství - Jaderné reaktory (PS)
- Fyzikální inženýrství - Laserová technika a fotonika (PS)
- Matematické inženýrství - Matematická fyzika (PS)
- Matematické inženýrství - Matematická informatika (elective course)
- Matematické inženýrství - Matematické modelování (PS)
- Kvantové technologie (compulsory course in the program)
- jaderné inženýrství - Radioaktivita v životním prostředí (PS)
- Physical Engineering - Computational physics (PS)
- Quantum Technologies (compulsory course in the program)
- Nuclear and Particle Physics (compulsory course in the program)
- Physical Engineering - Physical Engineering od Materials (PS)
- Mathematical Engineering - Mathematical Physics (PS)
- Physical Engineering - Plasma Physics and Thermonuclear Fusion (PS)