Differential Equations
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01DIFR | Z,ZK | 4 | 2P+2C | Czech |
- Garant předmětu:
- Michal Beneš
- Lecturer:
- Michal Beneš
- Tutor:
- Michal Beneš, Pavel Strachota
- Supervisor:
- Department of Mathematics
- Synopsis:
-
The course contains introduction in the solution of ordinary differential equations. It contains a survey of equation types solvable analytically, basics of the existence theory, solution of linear types of equations and introduction in the theory of boundary-value problems.
- Requirements:
-
Basic course of Calculus, Linear Algebra (in the extent of the courses 01MA1, 01MAA2-4, 01LA1, 01LAA2 held at the FNSPE CTU in Prague).
- Syllabus of lectures:
-
1. Introduction - motivation in applications
2. Basics - theory of ordinary differential equations
3. Particular types of 1st-order ODEs.
- separated and separable equations
- homogeneous equations
- equations with the rational argument of the righthand side
- linear equations
- Bernoulli equations
- Riccati equations
- Equations x=f(y') a y=f(y')
4. Existence theory for equations y'=f(x,y)
- Peano theorem
- Osgood theorem
5. Sensitivity on the righthand side and on the initial conditions
6. Linear n-th order differential equations
7. Systems of 1st order linear differential equations
8. Boundary-value problems
- Syllabus of tutorials:
-
1. Equations with separated variables
2. Separable equations
3. Homogeneous differential equations
4. Generalized (quasi-homogeneous) differential equations
5. Equations with rational righthand-side argument s racionálním argumentem
6. Linear 1st-order differential equations
7. Bernoulli equations
8. Riccati equations
9. Differential equations x=f(y') a y=f(y')
10. Linear n-th order differential equations
with constant coefficients
11. Fundamental system for linear n-th order differential equations
12. Systems of linear 1st order differential equations with constant coefficients
- Study Objective:
-
Knowledge:
analytical solution of selected types of equations, the basics of the existence theory, solution of linear types of equations
Skills:
Analytical solution of the known types of ordinary differential equations, mathematical analysis of the initial-value problems, solution of linear n-th order differential equations and of the system of 1st-order linear ordinary differential equations.
- Study materials:
-
Key references:
[1] D. Schaeffer and J. Cain, Ordinary Differential Equations: Basics and Beyond, Springer-Verlag New York Inc., 2016
[2] F.Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer, Berlin 1990
[3] L.S.Pontrjagin, Obyknovennyje differencialnyje uravnenija, Nauka, Moskva 1965
[4] M.W.Hirsch and S.Smale, Differential Equations, Dynamical systems, and Linear Algebra, Academic Press, Boston, 1974
Recommended references:
[5] A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman and Hall/CRC Press, Boca Raton, 2003
[6] W. Walter, Gewöhnliche Differenzialgleichungen, Springer, Berlin 1990
[7] J. Kluvánek, L. Mišík a M. Švec. Mathematics II, SVTL Bratislava 1961 (in Slovak)
[8] K. Rektorys a kol. Survey of Applied Mathematics, Prometheus, Praha 1995 (in Czech)
- Note:
- Time-table for winter semester 2024/2025:
- Time-table is not available yet
- Time-table for summer semester 2024/2025:
- Time-table is not available yet
- The course is a part of the following study plans:
-
- Aplikovaná algebra a analýza (compulsory course in the program)
- Matematické inženýrství - Matematická fyzika (PS)
- Matematické inženýrství - Matematická informatika (PS)
- Matematické inženýrství - Matematické modelování (PS)
- Mathematical Engineering - Mathematical Physics (PS)