Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2024/2025

Pokročilá robotika

Předmět není vypsán Nerozvrhuje se
Kód Zakončení Kredity Rozsah Jazyk výuky
B3M33PRO Z,ZK 6 2P+2C česky
Vztahy:
Předmět B3M33PRO nesmí být zapsán, je-li v témže semestru zapsán anebo již dříve absolvován předmět BE3M33PKR (vztah je symetrický)
Předmět B3M33PRO nesmí být zapsán, je-li v témže semestru zapsán anebo již dříve absolvován předmět BE3M33PRO (vztah je symetrický)
Předmět B3M33PRO nesmí být zapsán, je-li v témže semestru zapsán anebo již dříve absolvován předmět AE3M33PRO (vztah je symetrický)
Podmínkou zápisu na předmět B3M33PRO je, že student si nejpozději ve stejném semestru zapsal příslušný počet předmětů ze skupiny BEZBM
Předmět B3M33PRO nesmí být zapsán, je-li v témže semestru zapsán anebo již dříve absolvován předmět B3M33PKR (vztah je symetrický)
Předmět B3M33PRO může být splněn v zastoupení předmětem BE3M33PRO
Předmět B3M33PRO může být splněn v zastoupení předmětem BE3M33PKR
Předmět B3M33PRO nesmí být zapsán, je-li v témže semestru zapsán anebo již dříve absolvován předmět BE3M33PKR (vztah je symetrický)
Předmět B3M33PRO nesmí být zapsán, je-li v témže semestru zapsán anebo již dříve absolvován předmět BE3M33PRO (vztah je symetrický)
Předmět B3M33PRO nesmí být zapsán, je-li v témže semestru zapsán anebo již dříve absolvován předmět B3M33PKR (vztah je symetrický)
Předmět B3M33PRO může být splněn v zastoupení předmětem B3M33PKR
Předmět je ekvivalentní s AD3M33PRO,A3M33PRO .
Garant předmětu:
Přednášející:
Cvičící:
Předmět zajišťuje:
katedra kybernetiky
Anotace:

Předmět vysvětlí a předvede metody pro popis, kalibraci a analýzu kinematiky průmyslových robotů. Hlouběji vysvětlí

principy reprezentace prostorového pohybu a popisy robotů pro kalibraci jejich kinematických parametrů z měřených

dat. Vysvětlíme řešení inverzní kinematické úlohy pro obecný 6DOF manipulátor a použití pro identifikaci parametrů

robotu. Základním teoretickým výpočetním nástrojem pro řešení kinematických, kalibračních a analytických úloh bude

lineární a polynomiální algebra a metody výpočetní algebraické geometrie. Teoretické techniky budou demonstrovány v

simulacích a ověřovány na datech z reálných průmyslových robotů.

Požadavky:

A3B33ROB

Osnova přednášek:

1. Úvod, algebraické rovnice a vlastní čísla matice

2. Pohyb jako transformace souřadnic

3. Denavit-Hartenberg konvence sériového manipulátoru

4. Algebraické rovnice a metoda jejich řešení

5. Rotační matice a osa pohybu

6. Inverzní kinematická úloha pro obecný 6R sériový manipulátor I

7. Inverzní kinematická úloha pro obecný 6R sériový manipulátor II

8. Reprezentace a parametrizace rotace

9. Parametrizace osa-úhel

10. Kvaterniony

11. Kalibrace manipulátoru

12. Shrnutí.

Osnova cvičení:

1. Seznámení s laboratorními úlohami, Maple, a-test

2. Oprava a-testu, Maple,.

3. Rotace v prostoru a její reprezentace, osa pohybu.

4. Modifikovaný Denavitův-Hartenbergův popis kinematiky manipulátoru.

5. Popis manipulátoru s redundantní kinematikou

6. Soustavy algebraických rovnic a její řešení.

7. Nalezení singulárních polohy manipulátoru.

8. Úloha 1: Řešení inverzní kinematiky 6DOF sériového manipulátoru 1.

9. Úloha 1: Řešení inverzní kinematiky 6DOF sériového manipulátoru 2.

10. Úloha 1: Řešení inverzní kinematiky 6DOF sériového manipulátoru 3.

11. Úloha 2: Identifikace kinematických parametrů 6DOF sériového manipulátoru 1.

12. Úloha 2: Identifikace kinematických parametrů 6DOF sériového manipulátoru 2

13. Úloha 2: Identifikace kinematických parametrů 6DOF sériového manipulátoru 3.

14. Prezentace úloh.

Cíle studia:

Cílem předmětu je představit pokročilejší metody analýzy a modelování kinematiky robotů.

Studijní materiály:

Reza N. Jazar: Theory of Applied Robotics: Kinematics, Dynamics, and Control. Springer, druhé vydání, 2010.

Učednice pokrývající geometrii a kinamematiku manipulátorů. Dostupná v knihovně ČVUT.

M. Meloun, T. Pajdla. Inverse Kinematics for a General 6R Manipulator. CTU-CMP?2013-29. 2013.

Algebraicko-numerické řešení inversní kinematické úlohy 6R manipulátoru.

ftp://cmp.felk.cvut.cz/pub/cmp/articles/meloun/Meloun-TR-2013-29.pdf

T. Pajdla. Elements of Geometry for Robotics. 2014.

Geometry and representation of motion.

Dostupné v PDF: cmp.felk.cvut.cz/cmp/courses/PRO/2014/Lecture/PRO-2014-Lecture.pdf

Poznámka:
Další informace:
http://cw.fel.cvut.cz/wiki/courses/pro
Pro tento předmět se rozvrh nepřipravuje
Předmět je součástí následujících studijních plánů:
Platnost dat k 12. 12. 2024
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/cs/predmet4678206.html