Differential calculus on manifolds
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01DPVB | ZK | 2 | 2P+0C | Czech |
- Course guarantor:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Mathematics
- Synopsis:
-
Smooth manifold, tangent space differential forms, tensors, Riemannian metrics and manifold, covariant
derivative, parallel transport, orientation of manifold, itegration on manifold and Stokes theorem.
- Requirements:
-
A good knowledge of linear algebra and multivariable differential and integral calculus, a basic knowledge of topological notions (e.g., in the extent of the courses 01MAN1-2, 01ANA/B3-4, 01LAL1-2, and 01TOP held at the FNSPE CTU in Prague).
- Syllabus of lectures:
-
1. Smooth manifolds
2. Tangent and cotangent space
3. Tensors, differential forms
4. Orientation of manifold, integration on manifold
5. Stokes theorem
6. Riemannian manifold.
- Syllabus of tutorials:
- Study Objective:
- Study materials:
-
Povinná literatura
1. L. Krump, V. Souček, J.A. Těšínský: Matematická analýza na varietách, skripta MFF UK, Karolinum, 1999.
Doporučená literatura
2. O. Kovalski: Úvod do Riemannovy geometrie, Univerzita Karlova, 1995.
3. M. Spivak: Calculus on Manifolds, CRC Press, 2018.
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Aplikovaná algebra a analýza (compulsory course in the program)