Functional Analysis 1
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01FANA1 | Z,ZK | 5 | 2P+2C | Czech |
- Vztahy:
- In order to register for the course 01FAN2, the student must have successfully completed or received credit for and not exhausted all examination dates for the course 01FANA1.
- Garant předmětu:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Mathematics
- Synopsis:
- Requirements:
- Syllabus of lectures:
-
1. Topological spaces
2. Metric spaces, compactness criteria, completion of a metric space
3. Topological vector spaces
4. Minkowski functional, the Hahn-Banach theorem
6. Metric vector spaces, Fréchet spaces
6. Normed vector spaces, bounded linear mappings, the operator norm
7. Banach spaces, extension of a bounded operator
8. Banach spaces of integrable functions
9. Hilbert spaces, orthogonal projection, orthogonal basis
10. The Riesz representation theorem, adjoint operator
- Syllabus of tutorials:
- Study Objective:
- Study materials:
-
Key references:
[1] J. Blank, P. Exner, M. Havlíček: Hilbert Space Operators in Quantum Physics, Springer, 2008.
[2] B. Simon: Operator Theory: A Comprehensive Course in Analysis, Part 4, AMS, Rhode Island, 2015.
[3] K. Yoshida, Functional Analysis, Springer Science & Business Media, New York 2013
[4] J. B. Conway, A Course in Functional Analysis, Springer Science & Business Media, New York 2013
Recommended references:
[5] W. Rudin: Real and Complex Analysis, (McGrew-Hill, Inc., New York, 1974)
[6] A. N. Kolmogorov, S. V. Fomin: Elements of the Theory of Functions and Functional Analysis, (Dover Publications,
1999)
[7] A. E. Taylor: Introduction to Functional Analysis, (John Wiley and Sons, Inc., New York, 1976)
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Aplikovaná algebra a analýza (compulsory course in the program)
- Aplikované matematicko-stochastické metody (compulsory course in the program)
- Matematické inženýrství - Matematická fyzika (PS)
- Matematické inženýrství - Matematická informatika (elective course)
- Matematické inženýrství - Matematické modelování (PS)