Logo ČVUT
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
STUDIJNÍ PLÁNY
2024/2025

Matematická analýza 2

Přihlášení do KOSu pro zápis předmětu Zobrazit rozvrh
Kód Zakončení Kredity Rozsah Jazyk výuky
BIK-MA2.21 Z,ZK 6 21KP+4KC česky
Garant předmětu:
Tomáš Kalvoda
Přednášející:
Petr Olšák
Cvičící:
Petr Olšák
Předmět zajišťuje:
katedra aplikované matematiky
Anotace:

Studium reálných funkcí jedné reálné proměnné započaté v BI-MA1 završíme vybudováním Riemannova integrálu. Studenti se seznámí s metodami integrace per partes a metodou substituce. Následně se zabýváme číselnými řadami, Taylorovými polynomy a řadami, jakožto i aplikacemi Taylorovy věty při výpočtu funkčních hodnot elementárních funkcí. Dále se věnujeme lineárním rekurentním rovnicím s konstantními koeficienty, konstrukci jejich řešení a studiu složitosti rekurzivních algoritmů pomocí Mistrovské metody. Poslední část předmětu je věnována úvodu do teorie funkcí více proměnných. Po zavedení základních objektů (parciální derivace, gradient, Hessova matice) se věnujeme hledání volných extrémů funkcí více proměnných. Vysvětlíme princip spádových metod pro hledání lokálních extrémů a nakonec se zabýváme integrací funkcí více proměnných.

Tento předmět si lze zapsat až po úspěšném absolvování předmětu BIK-MA1, který může být v případě opakujících studentů nahrazen předmětem BIK-ZMA.

Požadavky:

Znalosti na úrovni BI-MA1.21, BI-DML.21 a BI-LA1.21.

Osnova přednášek:

1. Primitivní funkce a neurčitý integrál.

2. Integrační metody per partes a substituce v neurčitém integrálu.

3. Riemannův určitý integrál, Newton-Leibnizova věta, zobecněný Riemannův integrál.

4. Integrační metody per partes a substituce v určitém integrálu.

5. Numerický výpočet určitého integrálu.

6. Číselné řady, kritéria konvergence a odhady asymptotického chování posloupností částečných součtů.

7. Taylorovy polynomy a řady.

8. Taylorova věta a její aplikace při odhadu přesnosti výpočtů funkčních hodnot elementárních funkcí.

9. Homogenní lineární rekurentní rovnice s konstantními koeficienty.

10. Nehomogenní lineární rekurentní rovnice s konstantními koeficienty.

11. Složitost rekurzivních algoritmů, Mistrovská metoda (Master Theorem).

12. [2] Funkce více proměnných, parciální derivace, gradient, Hessova matice.

14. Různé typy definitností kvadratických forem a metody jejich určení.

15. Analytická metoda hledání volných extrémů funkcí více proměnných.

16. Princip spádových metod pro hledání lokálních extrémů funkcí více proměnných.

17. Riemannův integrál funkce více proměnných, Fubiniova věta.

18. Substituce v Riemannově integrálu funkce více proměnných.

Osnova cvičení:

1. Neurčitý integrál, per partes a substituce.

2. Určitý integrál, Newtonova-Leibnizova formule, per partes a substituce.

3. Číselné řady, kritéria konvergence.

4. Odhady asymptotického chování posloupností částečných součtů pomocí integrace.

5. Taylorovy polynomy a řady.

6. Taylorova věta a její aplikace.

7. Řešení lineárních rekurentních rovnic.

8. Mistrovská metoda (Master Theorem).

9. Funkce více proměnných, parciální derivace, gradient, Hessova matice.

10. Hledání volných extrémů funkcí více proměnných.

11. Riemannův integrál funkce více proměnných, Fubiniova věta.

12. Substituce v Riemannově integrálu funkce více proměnných.

Cíle studia:
Studijní materiály:

1. Oberguggenberger M., Ostermann A. : Analysis for Computer Scientists. Springer, 2018. ISBN 978-0-85729-445-6.

2. Nagle R. K., Saff E. B., Snider A. D. : Fundamentals of Differential Equations (9th Edition). Pearson, 2017. ISBN 978-0321977069.

3. Graham R. L., Knuth D. E., Patashnik O. : Concrete Mathematics: A Foundation for Computer Science (2nd Edition). Addison-Wesley Professional, 1994. ISBN 978-0201558029.

4. Kopáček J.: Matematická analýza nejen pro fyziky I, Matfyzpress, 2016, ISBN 978-80-7378-353-5

5. Kopáček J.: Matematická analýza nejen pro fyziky II, Matfyzpress, 2015, ISBN 978-80-7378-282-5

Poznámka:
Další informace:
https://courses.fit.cvut.cz/BIK-MA2
Rozvrh na zimní semestr 2024/2025:
Rozvrh není připraven
Rozvrh na letní semestr 2024/2025:
Rozvrh není připraven
Předmět je součástí následujících studijních plánů:
Platnost dat k 16. 6. 2024
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/cs/predmet6539906.html