Spektrální geometrie
Kód | Zakončení | Kredity | Rozsah |
---|---|---|---|
D01SG | ZK | 2P |
- Garant předmětu:
- Přednášející:
- Cvičící:
- Předmět zajišťuje:
- katedra matematiky
- Anotace:
-
Předmět je pokročilou, navazující verzí magisterského kurzu přednášeného vyučujícím v letním semestru od roku 2014 (Geometrické aspekty spektrálné teorie). Cílem přednášky je seznámit studenty se spektrálními metodami parciálních diferenciálních rovnic pocházejících z fyziky a geometrie. Zvláštní důraz bude kladen na geometrií indukované spektrální vlastnosti kvantově-mechanických a vibračních systémů.
- Požadavky:
-
Funkcionální analýza vítána, avšak nevyžadována.
- Osnova přednášek:
-
1. Motivace. Spektrální problémy v klasické a moderní fyzice. Geometrické aspekty.2. Definice laplaciánu coby samosdruženého operátoru na Hilbertové prostoru. Dirichletovy, Neumannovy a Robinovy hraniční podmínky. Sobolevovy prostory a eliptická regularita.3. Glazmanova klasifickace eukleidovských oblastí. Základní spektrální vlastnosti.4. Kvazi-konické oblasti. Lokalizace esenciálního spektra. Kritikalita versus subkritikalita.5. Kvazi-omezené oblasti. Kompaktnost Sobolevova vnoření a protipříklady.6. Omezené oblasti. Symetrické přerovnání a Faber-Krahnova nerovnost. Vlastnosti nodálních množin. Vibrační systémy.7. Kvazi-válcové oblasti. Geometrií indukované diskrétní spektrum a Hardyho nerovnosti v trubicích. Kvantové vlnovody.
- Osnova cvičení:
- Cíle studia:
- Studijní materiály:
-
Povinná literatura:[1] B. Davies: Spectral theory and differential operators, Cambridge University Press, 1995.[2] H, Urakawa, Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian, World Scientific, 2017.Doporučená literatura:[3] D. E. Edmunds and W. D. Evans: Spectral theory and differential operators, Oxford University Press, 1987.[4] Grigor'yan: Heat kernel and analysis on manifolds, AMS,2009.[5] A. Henrot: Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics, Birkhäuser, Basel,2006.
- Poznámka:
- Další informace:
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů: