Diferenciální geometrie I
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
D01DIG | ZK | 4P | česky |
- Garant předmětu:
- Milada Kočandrlová
- Přednášející:
- Milada Kočandrlová
- Cvičící:
- Předmět zajišťuje:
- katedra matematiky
- Anotace:
-
Při studiu zakřivení ekvipotenciálních ploch gravitačního, resp. tíhového potenciálu Země nevystačíme s pojmem plochy a pojmem skalárního součinu jak je známe z E. Diferencovatelná varieta jako zobecnění pojmu plochy. Tenzor jako zobecnění lineární a bilineární formy. Metrický tenzor jako zobecnění skalárního součinu. Tenzor křivosti a torze na ploše. Vektorové pole a derivace vektorového pole podle vektoru a podle vektorového pole, kovariantní derivace a absolutní diferenciál. Marussiho tenzor jako absolutní derivace diferenciálu gravitačního potenciálu. Vnější formy na plochách, Riemannova konexe. Plochy s konstantní Gaussovou křivostí a jejich geodetická zobrazení.
- Požadavky:
- Osnova přednášek:
- Osnova cvičení:
- Cíle studia:
- Studijní materiály:
- Poznámka:
- Rozvrh na zimní semestr 2024/2025:
- Rozvrh není připraven
- Rozvrh na letní semestr 2024/2025:
- Rozvrh není připraven
- Předmět je součástí následujících studijních plánů: