Pravděpodobnostní modely učení
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
01PMU | ZK | 2 | 2+0 | česky |
- Garant předmětu:
- Přednášející:
- Cvičící:
- Předmět zajišťuje:
- katedra matematiky
- Anotace:
-
Úvod do teorie PAC modelu pravděpodobnostního učení, VC-dimenze konečných množin, Sauerovo, Coverovo a Radonovo lemma, VC-dimnenze složeného zobrazení, využití VC-dimenze pro odhad vzorů nutných pro PAC učicí algoritmus, analýza vlastností učení založeného na delta pravidle, rozšíření PAC modelu a PAO učení, pravděpodobnostní hledání Fourierových koeficientů Booleovských funkcí.
- Požadavky:
- Osnova přednášek:
-
1. Úvod PAC modelu učení
2. Koncepty a třídy konceptů
3. PAC učení pro případ konečných množin
4. Vapnik-Červoněnkova dimenze (Sauerovo, Coverovo a Radonovo lemma)
5. VC-dimenze konečných množin
6. VC-dimenze sjednocení a průniku
7. VC-dimenze of lineárních konceptů
8. Aplikace Coverova lemmatu
9. Vapnik-Červoněnkova dimenze složeného zobrazení
10. Vzorová složitost a VC-dimenze
11. Odhad minimálního počtu vzorů pro PAC učení
12. Učící algoritmy odvozené od delta pravidla
13. Dolní odhad maximálního počtu kroků delta pravidla
14. Polynomiální učení a dimenze vzorů
15. Přibližné řešení problému pokrytí množin
16. Polynomiální učení a popisná složitost vzorů
17. Pravděpodobnostní učící algoritmy
18. Pravděpodobnostní aproximace Fourierova rozvoje
19. Pravděpodobnostní hledání koeficientů Fourierova rozvoje Booleovských funkcí
20. PAO model učení
- Osnova cvičení:
- Cíle studia:
-
Znalosti:
Seznámit studenty s teoretickými a matematickými základy teorie pravděpodobnostního PAC modelu učení a jeho
variant.
Schopnosti:
Orientovat se v přednášené problematice a umět ji použít v dalších disciplinách.
- Studijní materiály:
-
Povinná literatura:
[1] F. Hakl, M. Holeňa. Úvod do teorie neuronových sítí. Ediční středisko ČVUT, Praha, 1997.
Doporučená literatura:
[2] Vwani Roychowdhury, Kai-Yeung Siu, Alon Orlitsky. Theoretical Advances in Neural Computation and Learning. Kluwer, Academic Publishers, 1994.
[3] Martin Anthony and Norman Biggs. Computational Learning Theory. Press Syndicate of the University of Cambridge, 1992.
[4] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis Dimension. Journal of the Association for Computing Machinery, 36:929-965, oct 1989.
- Poznámka:
- Další informace:
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů:
-
- Matematické inženýrství (volitelný předmět)
- Aplikace softwarového inženýrství (volitelný předmět)
- Matematická informatika (volitelný předmět)