Pravděpodobnostní modely umělé inteligence
Kód | Zakončení | Kredity | Rozsah | Jazyk výuky |
---|---|---|---|---|
01UMIN | KZ | 2 | 2+0 | česky |
- Garant předmětu:
- Přednášející:
- Cvičící:
- Předmět zajišťuje:
- katedra matematiky
- Anotace:
-
Obsahem předmětu je přehled metod používaných pro zpracování neurčitosti v oblasti umělé inteligence. Hlavní pozornost je věnována tzv. grafickým markovským modelům, zejména Bayesovským sítím.
- Požadavky:
-
Základní kurs pravděpodobnosti a matematické statistiky.
- Osnova přednášek:
-
1. Úvod do umělé inteligence: řešení problému, stavové prostory, hledání řešení, algoritmus A s hvězdičkou, optimalita řešení.
2. Neurčitost v umělé inteligenci: neurčitost v expertních systémech, pseudobayesovský způsob práce s nejistotou v Prospectoru.
3. Intervalové pravděpodobnosti: kapacity, horní a dolní pravděpodobnosti, koherence, domněnkové funkce, míry možnosti, konvexní množiny pravděpodobností.
4. Podmíněná nezávislost a její vlastnosti: faktorizační lemma, lemma o nezávislosti bloku.
5. Grafové markovské vlastnosti: párová, lokální a globální markovská vlastnost.
6. Triangulované grafy: rozklad grafu, „maximum cardinality search“, perfektní uspořádání uzlů a klik, triangularizace grafu, „running intersection property“, stromy spojení.
7. Bayesovské sítě: konsistence distribuce reprezentované bayesovksou sítí, závislostní struktura.
8. Výpočty v bayesovských sítích: Shachterův algoritmus, transformace bayesovské sítě na rozložitelný model, posílání zpráv ve stromech spojení.
- Osnova cvičení:
- Cíle studia:
-
Znalosti:
Modely neurčitosti v umělé inteligenci a metody jejího zpracování.
Schopnosti:
Samostatná orientace v problematice umělé inteligence.
- Studijní materiály:
-
Povinná literatura:
[1] R. Jiroušek: Metody zpracování a reprezentace znalostí v umělé inteligenci, VŠE Praha 1995.
[2] V. Mařík, O. Štěpánková a kol.: Umělá inteligence 2, Academia, Praha, 1997.
Doporučená literatura:
[3] R. G. Cowell, A. Ph. David, S. L. Lauritzen, D. J. Spiegelhalter: Probabilistic networks and expert systems, Springer 1999.
- Poznámka:
- Další informace:
- Pro tento předmět se rozvrh nepřipravuje
- Předmět je součástí následujících studijních plánů:
-
- Matematické inženýrství (volitelný předmět)
- Aplikovaná algebra a analýza (volitelný předmět)
- Aplikované matematicko-stochastické metody (volitelný předmět)