Equations of Mathematical Physics B
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
01RMFB | Z,ZK | 5 | 2P+2C | Czech |
- Course guarantor:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Mathematics
- Synopsis:
-
The subject of this course is solving integral equations, theory of generalized functions, classification of partial
differential equations, theory of integral transformations, and solution of partial differential equations.
- Requirements:
-
All courses of linear algebra and mathematical analysis (calculus) including Lebesgue integration. Some understanding of functional analysis is beneficial but not crucial.
- Syllabus of lectures:
-
1. Classical Integral Transforms Laplace and Fourier transforms, their properties, the „Ten Commandments“ of Fourier and Laplace transforms, and simple applications.
2. Introduction to Functional Analysis Function factor spaces, Hilbert spaces, properties of the inner product, orthonormal bases, Fourier series expansions, orthogonal polynomials, Hermitian operators.
3. Integral Equations Integral operators and their properties, separable kernel of the operator, method of successive approximations, method of iterated kernels, Fredholm integral equations, Volterra integral equations.
4. Second-Order Linear Partial Differential Equations (PDEs) Definitions, types of PDE eccentricity, transformation to canonical forms, PDE classification, Cauchy problem, classical problems of mathematical physics.
5. Theory of Generalized Functions Class of test functions, ultrafilter convergence, class of generalized functions, elementary operations on distributions, generalized functions with positive support, elementary introduction to tensor product and convolution.
6. Generalized Versions of Integral Transforms General overview of extending transforms to spaces of generalized functions.
7. Solving PDEs Fundamental solutions of operators, basic theorem on solving PDEs, derivation of general solutions to classical problems in mathematical physics.
- Syllabus of tutorials:
- Study Objective:
- Study materials:
-
Key references:
[1] A. G. Webster, Partial Differential Equations of Mathematical Physics, Second Edition, Dover, New York, 2016
[2] A. Tikhonov, A. Samarskii: Equations of Mathematical Physics, Courier Corp., Science, 2013
Recommended literature:
[5] L. Schwartz: Mathematics for the Physical Sciences, Dover Publication, 2008.
[6] I. M. Gel'fand, G. E. Shilov: Generalized Functions. Volume I: Properties and Operations, Birkhäuser Boston, 2004.
- Note:
- Further information:
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Fyzikální inženýrství - Počítačová fyzika (PS)
- Aplikované matematicko-stochastické metody (compulsory course in the program)
- Jaderné inženýrství - Aplikovaná fyzika ionizujícího záření (PS)
- Fyzikální inženýrství - Fyzikální inženýrství materiálů (PS)
- Fyzikální inženýrství - Fyzika plazmatu a termojaderné fúze (PS)
- Fyzikální inženýrství - Inženýrství pevných látek (PS)
- Jaderná a částicová fyzika (compulsory course in the program)
- Jaderné inženýrství - Jaderné reaktory (PS)
- Fyzikální inženýrství - Laserová technika a fotonika (PS)
- Kvantové technologie (compulsory course in the program)
- jaderné inženýrství - Radioaktivita v životním prostředí (elective course)
- Vyřazování jaderných zařízení z provozu (compulsory course in the program)
- Physical Engineering - Computational physics (PS)
- Quantum Technologies (compulsory course in the program)
- Nuclear and Particle Physics (compulsory course in the program)
- Physical Engineering - Physical Engineering od Materials (PS)
- Mathematical Engineering - Mathematical Physics (PS)
- Physical Engineering - Plasma Physics and Thermonuclear Fusion (PS)
- Physical Engineering - Solid State Engineering (PS)
- Physical Engineering - Laser Technology and Photonics (PS)