Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024

Statistical Modelling Lab

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
NI-LSM2 KZ 5 3C Czech
Garant předmětu:
Kamil Dedecius
Lecturer:
Kamil Dedecius
Tutor:
Kamil Dedecius
Supervisor:
Department of Applied Mathematics
Synopsis:

The topic of LSM2 is advanced multiple target tracking (MTT). This domain covers simultaneous tracking of multiple targets using radar under the presence of clutter, or video tracking. We aim at the state-of-the-art filters, in particular the PHD (Probability Hypothesis Density) and PMBM (Poisson Multi-Bernoulli) filters.

Requirements:

BI-LIN, BI-ZMA, BI-PST

Ideally NI-LSM (= PDA, JPDA, and IPDA filtering), too. A perfect knowledge of the Kalman filter is assumed.

Syllabus of lectures:
Syllabus of tutorials:

1. Introduction into the topic.

2. Random finite sets theory.

3. PHD filter: basic principles.

4. PHD filter: mixture explosion issue.

5. PHD filter: implementation.

6. PMBM filter: generating functionals (intro).

7. PMBM filter: generating functionals (cont.).

8. PMBM filter and PHD filter: differences

9. PMBM filter: implementation.

10. Track-oriented filters I

11. Track-oriented filters II

12. Evaluation

Study Objective:
Study materials:

1. E. Brekke: Fundamentals of sensor fusion. NTNU, 2021

2. B. . -N. Vo and W. . -K. Ma, „The Gaussian Mixture Probability Hypothesis Density Filter,“ in IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4091-4104, Nov. 2006, doi: 10.1109/TSP.2006.881190.

Note:
Further information:
https://courses.fit.cvut.cz/NI-LSM2/
Time-table for winter semester 2023/2024:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
Tue
Wed
Thu
room
Dedecius K.
16:15–17:45
(parallel nr.101)
Fri
Time-table for summer semester 2023/2024:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2024-06-20
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet7600806.html