CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

# Structural Mechanics 2

Code Completion Credits Range Language
132SME2 Z,ZK 6 2P+2C Czech

The course 132SME2 can be graded only after the course 132SME1 has been successfully completed.

Garant předmětu:
Anna Kučerová
Lecturer:
Anna Kučerová
Tutor:
Tomáš Janda, Anna Kučerová, David Šilhánek
Supervisor:
Department of Mechanics
Synopsis:

Internal forces diagrams of simple statically determinate plane structures and compound two-dimensional structures. Multiaxially loaded cantilever. Definition of normal stress and prepositions of its distribution in a cross section. Equivalence of internal forces. Geometry of mass and areas, centre of gravity and moments of inertia.

Requirements:

Before taking exam in 132SM02, it is required that students pass the exam in 132SM01.

Syllabus of lectures:

1) Introduction, definition and principle of calculation of internal forces in the selected cross-section of a beam.

2) Load transfer on the centre line of the beam, calculation of the internal forces on the three-dimensional straight beam and the three-dimensional cranked beams.

3) Calculation of the internal forces in the cross-section of an inclined beam and a plane frame beam structure, equilibrium in the joints of the frame beam structure.

4) Differential relationships between the internal forces and the loads for the straight plane beam and three-dimensional beam.

5) The functions of internal forces on the plane straight beam structure, extremes of the internal forces.

6) The functions of the internal forces on the plane inclined beam structure.

7) The internal force diagrams on the plane simple frame beam structures and on the plane complex frame beam structures.

8) The functions of the internal forces on the beam with a curved centre line, the parabolic and circular centre line.

9) The internal forces diagrams on symmetrical structures loaded with symmetrical loads.

10) The centre of gravity and moments of inertia of the cross sections, transformation of moments of inertia.

11) The principal central moments of inertia of the cross section, the ellipse of inertia.

Syllabus of tutorials:

1) Principle of marking the internal forces, calculation of the internal forces (bending moment M, normal force N, shear force V) in the cross-section of a straight beam structure.

2) Load transfer on the centre line of the beam, calculation of M, N, V in the cross-section of the three-dimensional straight beam and the three-dimensional cranked beams.

3) Calculation of M, N, V in the cross-section of an inclined beam and a plane frame beam structure, equilibrium in the joints of the frame beam structure.

4) The M, N, V diagrams on a plane straight beam – uniformly distributed load, triangular distributed load, trapezoidal distributed load, extremes of the internal forces.

5) The M, N, V diagrams on the plane frame beam structure - uniformly distributed load, triangular distributed load, trapezoidal distributed load, extremes of the internal forces, equilibrium in the joints of the frame beam structure.

6) The M, N, V diagrams on the plane frame structure with inclined beams.

7) The M, N, V diagrams on the plane complex frame beam structures.

8) The M, N, V diagrams on the beam with a curved centre line.

9) The M, N, V diagrams on a generally loaded three-dimensional straight beam.

10) The centre of gravity and moments of inertia of the composite cross sections, the principal central moments of inertia, the ellipse of inertia of the composite cross-sections.

11) The centre of gravity and moments of inertia of the composite cross sections, the principal central moments of inertia, the ellipse of inertia of the composite cross-sections.

Study Objective:

Student will be able to solve internal forces diagrams of statically determinate plane structures and multiaxially loaded cantilevers and to determine second moments of area.

Study materials:

!Jíra, A. a kolektiv: Sbírka příkladů stavební mechaniky. ČVUT, Praha, 2019, ISBN:978-80-01-06301-9 (it is currently available online on: http://mech.fsv.cvut.cz/wiki/images/6/67/Sbirka_prikladu_SUK.pdf).

! Kufner, V., Kuklík, P.: Stavební mechanika 20, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01523-8.

! Kufner, V., Kuklík, P.: Stavební mechanika 30, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01893-8.

! Kufner, V., Kuklík, P.: Stavební mechanika 10, Vydavatelství ČVUT, Praha, 1998, ISBN 80-01-01398-7.

? Beer F. P., Johnston Jr. E. R., Mazurek D.: Vector Mechanics for Engineers: Statics 11th Edition, McGraw-Hill Education, 2016, ISBN 978-0077687304.

: Study materials on the website of the department: https://mech.fsv.cvut.cz/student/

Note:
Time-table for winter semester 2023/2024:
Time-table is not available yet
Time-table for summer semester 2023/2024:
 06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00 roomTH:D-112208:00–09:50(lecture parallel1)Thákurova 7 (budova FSv)D1122roomTH:B-37314:00–15:50(lecture parallel1parallel nr.103)Thákurova 7 (budova FSv)B373 roomTH:C-20408:00–09:50(lecture parallel1)Thákurova 7 (budova FSv)C204roomTH:B-97714:00–15:50(lecture parallel1parallel nr.102)Thákurova 7 (budova FSv)B977 roomTH:B-97712:00–13:50(lecture parallel1parallel nr.101)Thákurova 7 (budova FSv)B977 roomTH:B-87814:00–15:50(lecture parallel1parallel nr.105)Thákurova 7 (budova FSv)B878 roomTH:A-53414:00–15:50(lecture parallel1parallel nr.104)Thákurova 7 (budova FSv)A534
The course is a part of the following study plans:
Data valid to 2024-04-21
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet7599706.html