Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

Efficient Algorithms for Multibody Systems

Login to KOS for course enrollment Display time-table
Code Completion Credits Range
W31OZ002 ZK 26P+52C
Garant předmětu:
Michael Valášek
Lecturer:
Václav Bauma, Zbyněk Šika, Michael Valášek
Tutor:
Václav Bauma, Zbyněk Šika, Michael Valášek
Supervisor:
Department of Mechanics, Biomechanics and Mechatronics
Synopsis:

The student will be acquainted with the main modern methods of efficient algorithms for multibody systems.

•Overview of traditional multibody systems and their problems.

•Efficient algorithms of kinematical solution: parametric method, method of structural approximation.

•Efficient algorithms of dynamic solution: Recursive formalism of articulated body inertia method.

•Efficient algorithms of dynamic solution: Recursive formalism of composite rigid body method.

•Efficient algorithms of dynamic solution: Recursive formalism of residual method.

•Efficient algorithms for parallel-processor dynamic solution: Divide-and-Conquer method.

•Efficient algorithms for solving dynamics on parallel processors: elimination method.

•Efficient algorithms for solving dynamics on parallel processors: molecular dynamics.

•Methods of reduction of models of flexible multibody systems.

•Methods of efficient use of symbolic algebra.

•Efficient solution of differential-algebraic equations (DAE).

•Co-simulation method.

Requirements:
Syllabus of lectures:
Syllabus of tutorials:
Study Objective:
Study materials:

•Stejskal, V. Valasek, M.: Kinematics and Dynamics of Machinery, Marcel Dekker, New York 1996

•Featherstone, R.: Rigid Body Dynamics Algorithms, Springer 2008

•Kukula P., Valasek M.: Kinematical Solution by Structural Approximation, In: Kecskeméthy A., Müller A. (eds) Computational Kinematics. Springer 2009, pp. 323-330

•Rapaport, D.C.: The Art of Molecular Dynamics Simulation, Cambridge University Press 2010

•Banerjee, A.K.: Flexible Multibody Dynamics: Efficient Formulations and Applications, John Wiley 2016

•Arnold, M., Schiehlen, W. (eds.): Simulation Techniques for Applied Dynamics, Springer 2009

•L. Mraz, Efficient Parallel Solution of Multibody Dynamics, Ph.D. Thesis, FME CVUT in Prague, 2017

•odkaz: https://moodle-vyuka.cvut.cz/

Note:
Time-table for winter semester 2024/2025:
Time-table is not available yet
Time-table for summer semester 2024/2025:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2024-09-20
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet6688206.html