Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

DB Technologies for Big Data

The course is not on the list Without time-table
Code Completion Credits Range Language
BIE-BIG.21 KZ 5 2P+2C English
Course guarantor:
Lecturer:
Tutor:
Supervisor:
Department of Software Engineering
Synopsis:

Students will be introduced into the field of Big Data processing where nonrelational (NoSQL) database engines are typically used today. The course is focused practically so that after finishing the course students were able to choose suitable tools (mostly open source) and techniques,design and implement a simplest reproducible method of data processing (data collection, transformation/aggregation, presentation). Students get acquainted with various architectures for processing and storing big data. A theoretical foundation and presentation of individual technologies will be supplemented with specific case studies.

Requirements:

Basic knowledge of relational databases, working with the command line.

Syllabus of lectures:

1. Introduction to the Big Data processing, the definition of the Big Data concept, CAP theorem.

2. Case study.

3. [2] Column-oriented database engines (Cassandra).

5. Document-oriented database engines (MongoDB).

6. [2] Platforms for Big Data processing based on maintaining data in a file system (Hadoop).

8. [2] Platforms for Big Data processing based on maintaining data in main memory (Spark).

10. Indexing of unstructured and semistructured data (ElasticSearch, Solr).

11. Tools for data visualization and presentation (Kibana).

12. [2] Case studies.

Syllabus of tutorials:

1. Introduction to the laboratory environment

2. Introduction to working with Cassandra Cluster

3. Hadoop MapReduce

4. Cassandra UseCase 1 - Part 1

5. Cassandra UseCase 1 - Part 2

6. Cassandra UseCase 2 - Part 1 (Hive / Pig Use)

7. Cassandra UseCase 2 - Part 1

8. Cassandra UseCase 3 - Part 1 (Use Solr)

9. Cassandra UseCase 3 - Part 2

10. Cassandra UseCase 4 - Part 1 (Complex solution)

11. Cassandra UseCase 4 - Part 2

12. Submission of semester work, credit

13. Reserve

Study Objective:
Study materials:

1. Zikopoulos P., Eaton Ch. : Understanding big data: Analytics for enterprise class Hadoop and streaming data. McGraw-Hill Osborne Media, 2011. ISBN 978-0071790536.

2. Hewitt E. : Cassandra: The Definitive Guide. O'Reilly Media, 2010. ISBN 978-1449390419.

3. Meier A., Kaufmann M. : SQL & NoSQL Databases. Springer, 2019. ISBN 978-3-658-24549-8.

4. Bradshaw S., Brazil E., Chodorow Ch. : MongoDB: The Definitive Guide: Powerful and Scalable Data Storage. O'Reilly Media, 2019. ISBN 9781491954461.

Note:
Further information:
https://courses.fit.cvut.cz/BI-BIG/
No time-table has been prepared for this course
The course is a part of the following study plans:
Data valid to 2024-10-12
For updated information see http://bilakniha.cvut.cz/en/predmet6672506.html