UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Numerical approximation of models of flows

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
W01OZ002 ZK 52P+26C Czech
Garant předmětu:
Jiří Fürst
Jiří Fürst
Jiří Fürst
Department of Technical Mathematics

Objective and basic themes:

Students will learn basic principles of the numerical solution of equations describing the motion of fluids using the finite volume method.

The complete workflow including the formulation of the problem, choice of a suitable model and its numerical approximation, preprocessing, solution, postprocessing, and validation with experimental data will be presented using several practical problems.

The problems will include 2D or 3D flows of incompressible and compressible fluid in channels, atmospheric boundary layer, over profiles or through parts of turbines.

Syllabus of lectures:

1. Basic models of flows

2. Finite volume method, approximation of fluxes, approximation error, order of accuracy

3. Numerical solution with coupled and segregated solvers, explicit and implicit methods

4.Error analysis

5. Turbulent flows, turbulence models

6. Application of turbulence models to selected flow problems

7-11. Application of FVM to selected flow problems

12. Shape optimization, gradient and brute force methods

13. Application of shape optimization

Syllabus of tutorials:

1. Introduction to OpenFOAM package

2. Preprocessing, mesh generation, initial and boundary conditions

3. Numerical solution of convection-diffusion problem

4. Error analysis

5-6. Numerical simulation of turbulent flows over a flat plate

7-11. Numerical simulation of selected flow problems

12-13. Application of shape optimization methods

Study Objective:
Study materials:

Blazek, J.: Computational Fluid Dynamics: Principles and Applications, 2005, Elsevier.

Versteeg, H.K., Malalasekera, W.: An introduction to Computational FLuid Dynamics: The finite volume method, Pearson education, 2007

Ferziger, J. H., Peric M.: Computational methods for fluid dynamics, 1996, Springer.

Time-table for winter semester 2022/2023:
Time-table is not available yet
Time-table for summer semester 2022/2023:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2023-06-08
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet6652906.html