CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Integral and discrete transforms

Code Completion Credits Range Language
W01TZ003 ZK 65P Czech
Garant předmětu:
Jan Halama
Lecturer:
Jan Halama
Tutor:
Jan Halama
Supervisor:
Department of Technical Mathematics
Synopsis:

Complex function of complex variable: basic functions, derivatives, analytic function, Cauchy-Riemann conditions, line integral, Cauchy integral theorem, Cauchy integral formula, Taylor serie of analytic function, Laurent serie, singular points, residual of function in singular point.

Laplace transform: basic properties, inverse Laplace transform, Laplace transform of Dirac a Heaviside function, application of Laplace transform to solution of ODE and PDE.

Discrete Laplace a Z transform: basic properties, inverse transform, application of Z transform to solution of difference equations.

Fourier series: Fourier serie of periodic function, amplitude spectra, application to solutions of ODE with periodical forcing term, solution of PDE by Fourier method, extension to nonperiodic functions, Fourier integral.

Fourier transform: basic properties, amplitude spectra of nonperiodic function, application to solution of PDE, discrete Fourier transform (DFT), fast Fourier transform (FFT).

Todays techniques used for real time transfer of signal: windowed Fourier transform, wavelet transform, Hilbert-Huang transform.

Requirements:
Syllabus of lectures:
Syllabus of tutorials:
Study Objective:
Study materials:

Schiff J. L.: The Laplace Transform - Theory and Applications, Springer-Verlag New York, 1999.

Gasquet C., Witomski P.: Fourier Analysis and Applications - Filtering, Numerical Computation, Wavelets, Springer-Verlag New York, 1999.

Mallat S.: A Wavelet Tour of Signal Processing, Academic Press, 2008.

Veit J.: Integrální transformace, SNTL, 1979.

Distant learning references: lecture texts (online)

Note:
Time-table for winter semester 2023/2024:
Time-table is not available yet
Time-table for summer semester 2023/2024:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2024-05-25
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet6652706.html