Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

Applications of Optimization Methods

Login to KOS for course enrollment Display time-table
Code Completion Credits Range
01AOM ZK 2 1P+1C
Course guarantor:
Tomáš Oberhuber
Lecturer:
Tomáš Oberhuber
Tutor:
Tomáš Oberhuber
Supervisor:
Department of Mathematics
Synopsis:

Aim of this course is to enhance the knowledge of the optimization methods and show their practical applications. Number

of methods are applied on the support-vector machines and subsequently, methods for large problems and training of deep

artificial neural networks are explained. Finaly, advanced methods for regret minimization or sparsity inducing methods

are explained. All methods are demonstrated on real problems.

Requirements:
Syllabus of lectures:

1. Introduction to advanced optimization methods.

2. Support-vector mechines.

3. Artificial neural networks in optimization.

4. Hessian inverse approximation, BFGS method.

5. Stochastic gradient descent.

6. Convex optimizations for regret minimization.

7. Sparsity-inducing optimization methods.

Syllabus of tutorials:
Study Objective:
Study materials:

Compulsory literature:

[1] H. J. Kochenderfer, T. A. Wheeler, Algorithms for Optimization, The MIT Press, 2019.

[2] S. Sra, S. Nowozin, S. J. Wright, Optimization for Machine Learning, The MIT Press, 2012.

[3] D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, 2015.

Optional literature:

[5] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, 2016.

[6] Ch. C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018.

Note:
Time-table for winter semester 2024/2025:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
roomTR:105
Oberhuber T.
10:00–11:50
(lecture parallel1)
Trojanova 13
Tue
Wed
Thu
Fri
Time-table for summer semester 2024/2025:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2024-12-30
For updated information see http://bilakniha.cvut.cz/en/predmet6384706.html