Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024

Regression Data Analysis

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
01RAD Z,ZK 5 2P+2C Czech
Garant předmětu:
Jiří Franc, Tomáš Hobza
Lecturer:
Tomáš Hobza
Tutor:
Jiří Franc, Tomáš Hobza
Supervisor:
Department of Mathematics
Synopsis:

1.Simple linear regression: least squares estimation, properties of parameter estimates, hypotheses tests and confi-dence intervals for parameters of the model, model-based prediction, analysis of residuals

2.Multiple linear regression: general linear model, least squares estimation, analytical and numerical solutions of the normal equations, properties of parameter estimates, coefficient of determination, F-test, prediction intervals

3.Residuals, diagnostics and transformations: residuals and residual plots, normality tests, detection of outlying and influential observations, hat matrix, Cook’s distance, transformations of dependent and independent varia-ble, Box-Cox transformation

4.Selection of a regression model: criteria functions, R2 statistics, Mallows’ Cp statistics, Akaike and Bayes infor-mation criteria, stepwise regression and backward elimination

5.Multicollinearity: impact of multicollinearity on precision of the parameter estimates, detecting and combatting multicollinearity, ridge regression

Requirements:
Syllabus of lectures:
Syllabus of tutorials:
Study Objective:
Study materials:

Key references:

[1] Golberg, M. Cho, H.A.: Introduction to Regression Analysis. WITpress, Southampton 2010.

[2] Olive, D.: Linear Regression. Springer, 2017.

Recommended references:

[3] Weisberg, S.: Applied Linear Regression. John Wiley & Sons, New Jersey 2014.

Note:
Time-table for winter semester 2023/2024:
Time-table is not available yet
Time-table for summer semester 2023/2024:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2024-07-18
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet6345706.html