Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024
UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Selected Topics in Optimization and Numerical mathematics

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
NI-PON Z,ZK 5 2P+1C Czech
Garant předmětu:
Štěpán Starosta
Lecturer:
Karel Klouda, Štěpán Starosta, Daniel Vašata
Tutor:
Karel Klouda, Štěpán Starosta, Daniel Vašata
Supervisor:
Department of Applied Mathematics
Synopsis:

The course focuses on optimization problems that appear in the field of machine learning and artificial intelligence. Students broaden their knowledge of continuous optimization obtained in the course Mathematics for informatics. The methods are explained and described along with the details on how they are implemented on computers. Hence, the relevant concepts of numerical matematics, mainly numerical linear algebra, are explained too.

Requirements:

NIE-MPI

Syllabus of lectures:

1. Continuous optimization: problem statement and machine learning examples.

2. - 3. (2) Iterative methods for finding local extremal values (gradient descent, Newton's method, and their variants).

4. Lagrange method, Karush–Kuhn–Tucker conditions.

5. Duality and interior point method.

6. - 7. (2) QR decomposition, algorithms computing QR decomposition, QR algorithm.

8. - 9. (2) Linear regression and least squares method: statistical and numerical properties.

10. - 11. (2) Support Vector Machines regression.

12. - 13. (2) Matrix factorizations and their usage in machine learning (SVD, PCA, non-negative factorization).

Syllabus of tutorials:

1. Iterative methods for local extrema

2. Constrained optimization

3. Duality

4. Matrix factorizations

5. SVD, PCA

6. SVM

Study Objective:
Study materials:

1. Christopher Bishop, Pattern Recognition and Machine Learning, Springer-Verlag New York, 2006

2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2011.

3. Stephen Boyd, Lieven Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

4. Lloyd N. Trefethen, David Bau, Numerical Linear Algebra, SIAM: Society for Industrial and Applied Mathematics, 1997

Note:
Further information:
https://courses.fit.cvut.cz/NI-PON
Time-table for winter semester 2023/2024:
Time-table is not available yet
Time-table for summer semester 2023/2024:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
Tue
Wed
roomTH:A-s135
Klouda K.
Starosta Š.

09:15–11:45
(lecture parallel1)
Thákurova 7 (budova FSv)
As135
Thu
Fri
The course is a part of the following study plans:
Data valid to 2024-05-30
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet6085506.html