Fundamentals of Modelling and Simulation
Code  Completion  Credits  Range  Language 

F7PMSZMS  KZ  2  2P+2C  Czech 
 Garant předmětu:
 Vojtěch Kamenský
 Lecturer:
 Vojtěch Kamenský, Aleš Tichopád
 Tutor:
 Vojtěch Kamenský, Aleš Tichopád
 Supervisor:
 Department of Biomedical Technology
 Synopsis:

Basic notions and principles of system modelling generally. Theoretical and applied analysis of qualities of models representing various medical, biochemical, epidemiological, ecological, and biological systems. Population modelling. Epidemiological models. Models of pharmacokinetics. Economic Models and Models in Health Technology Assessment.
 Requirements:

Compulsory attendance at the seminar, maximum three absences during the semester are allowed. The subject is completed with a classified credit Compulsory attendance at the seminar, maximum three absences during the semester are allowed. The subject is completed with a classified credit. Students are actively involved in solving problems in exercises where they can get a total of max. 50 points. Furthermore, student have to pass the final test with max. 50 points, which must meet at least 50%. Students have the possibility to get 100 points, 50 points are required to complete the subject. Rating according ECTS scale.
 Syllabus of lectures:

•Introduction to modeling. Basic notions of modelling and simulation. General modelling techniques.
•Matematical model. Formal description of a system. Equations of models., graphic notation of models, feedback
•Algorithmization of simulation model. View simulated system. View status changes. Time display
•Verifying the accuracy of the models. Model optimization. Evaluating simulation results. Visualization of simulation results
•Discrete simulation models. Overview of methods used and their use
•Modeling of continuous systems. Overview of methods used and their use. Random numbers generators
•Compartment models and their use. Pharmacodynamics.
•Modeling of biological systems. Mathematical biology. Population dynamics.
•Modeling of biological systems. Mathematical biology. Population dynamics.
•Modeling methods used in operative research and biomedicine
 Syllabus of tutorials:

•Introduction to modeling. Basic notions of modelling and simulation. General modelling techniques.
•Matematical model. Formal description of a system. Equations of models., graphic notation of models, feedback
•Algorithmization of simulation model. View simulated system. View status changes. Time display
•Verifying the accuracy of the models. Model optimization. Evaluating simulation results. Visualization of simulation results
•Discrete simulation models. Overview of methods used and their use
•Modeling of continuous systems. Overview of methods used and their use. Random numbers generators
•Compartment models and their use. Pharmacodynamics.
•Modeling of biological systems. Mathematical biology. Population dynamics.
•Modeling of biological systems. Mathematical biology. Population dynamics.
•Modeling methods used in operative research and biomedicine
 Study Objective:
 Study materials:

[1].MAZUMDAR, J. An introduction to mathematical physiology and biology. 2nd ed. New York: Cambridge University Press, 1999. ISBN 9780521646758.
[2].RIDEOUT, Vincent C. Mathematical and computer modeling of physiological systems. Englewood Cliffs, N.J.: Prentice Hall, c1991. ISBN 9780135633540.
[3].JOHN D. STERMAN. Business dynamics systems thinking and modeling for a complex world. [Nachdr.]. Boston: Irwin/McGrawHill, 2000. ISBN 9780072389159.
 Note:
 Timetable for winter semester 2023/2024:
 Timetable is not available yet
 Timetable for summer semester 2023/2024:

06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon Tue Wed Thu Fri  The course is a part of the following study plans:

 Systematic Integration of Processes in Healthcare  fulltime (compulsory elective course)