CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2023/2024

Code Completion Credits Range Language
141HACE Z,ZK 6 3P+2C English
Garant předmětu:
Václav Matoušek
Lecturer:
Václav Matoušek
Tutor:
Václav Matoušek
Supervisor:
Department of Hydraulics and Hydrology
Synopsis:

Flow of real liquid (mathematical modelling, Navier-Stokes equations, turbulence). Dimensional analysis and dynamic similarity. Unsteady flow (waves and transients). Flow structure and velocity distribution. Flow around solid bodies (boundary layer, wake). Solid particles in quiescent and flowing liquid. Non-Newtonian flow. Flow in pump-pipeline systems. Wastewater hydraulics. Hydraulics of water structures.

Requirements:

no prerequisities

Syllabus of lectures:

Principles of mathematical modelling and Navier-Stokes equations

Turbulence

Principles of physical modelling

Model similitude

Internal structure of flow - boundary layer, velocity distribution

Flow around solid bodies (separation, drag and lift), solid particles in liquid, solid-liquid flow

Non-Newtonian flow

Flow in pump-pipeline systems

Wastewater hydraulics

Hydraulics of water structures

Syllabus of tutorials:

Rehearsal of hydrodynamics fundamentals

Turbulence - evaluation of measured chatacteristics

Model similitude - examples

Unsteady flow - surge in open channel

Unsteady flow - water hammer in pipe

Velocity profile in pipe

Settling velocity of solid particle(s)

Non-Newtonian fluid - flow in pipe

Characteristics of pump-pipeline system - wastewater pumping

Hydraulics of water structures

Laboratory experiments: particle settling velocity, pump characteristics, sluice gate flow, water hammer

Processing of lab experiments

Study Objective:

The course for students of intermediate skills in hydraulics learns an ability to understand and a creativity to apply the physical laws governing a liquid flow and the rules for its mathematical and physical modeling. Furthermore, the course learns how to apply the acquired knowledge in solving various complex problems in hydraulic-engineering practice.

Study materials:

!CHADWICK, A.J., MORFETT, J.C.,BORTHWICK, M.: Hydraulics in Civil and Environmental Engineering. CRC Press. 2013. ISBN 978-0-415-67245-0

!GRAF, W.H.: Fluvial Hydraulics. Flow and Transport Processes in Channels of Simple Geometry. Wiley. 1998. ISBN 978-0-4719-7714-8

!HAGER, W.H.: Wastewater Hydraulics. Theory and Practice. Second Edition. Springer. 2010. ISBN 978-3-642-11382-6

?NALLURI, C., FEATHERSTONE, R. E.: Nalluri &amp; Featherstone's Civil Engineering Hydraulics. Wiley-Blackwell. 2009. ISBN 978-1-4051-6195-4

?NOVAK, P., GUINOT, V., JEFFREY, A., REEVE, D. E.: Hydraulic Modelling - an Introduction. Spon Press. 2010. ISBN 978-0-419-25020-3

:HYDRAULICS GUIDE of National Library of Technology (https://www.techlib.cz/en/83727-hydraulics)

Note:
Further information:
http://hydraulika.fsv.cvut.cz/Hydraulika/Hydraulika/Predmety/HACE/default.htm
Time-table for winter semester 2023/2024:
 06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00 roomTH:B-88015:00–17:50(lecture parallel1)Thákurova 7 (budova FSv)B880roomTH:B-88018:00–19:50(lecture parallel1parallel nr.101)Thákurova 7 (budova FSv)B880
Time-table for summer semester 2023/2024:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2024-08-04
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet5661306.html