Selected statistical methods
Code | Completion | Credits | Range | Language |
---|---|---|---|---|
MI-VSM | Z,ZK | 8 | 4P+2C | Czech |
- Course guarantor:
- Lecturer:
- Tutor:
- Supervisor:
- Department of Applied Mathematics
- Synopsis:
-
Summary of probability theory;
Multivariate normal distribution;
Entropy and its application to coding;
Statistical tests: T-tests, goodness of fit tests, independence test;
Random processes - stacionarity;
Markov chains and limiting properties;
Queuing theory
- Requirements:
-
Basics of probability and statistics, multivariable calculus, and linear algebra.
- Syllabus of lectures:
-
1. Summary of basic terms of probability theory
2. Random variables
3. Random vectors
4. Multivariate normal distribution
5. Entropy for discrete distribution
6. Application of entropy in coding theory
7. Entropy of continuous distribution
8. Summary of basic terms of statistics
9. Paired and Two-sample T-test,
10. Goodness of fit tests,
11. Independence test, contingency table
12. Estimation od PDF and CDF
13. Gaussian mixtures and EM algorithm
14. Random processes - stacionarity
15. Random processes - examples (Gaussian, Poisson)
16. Memory-less distributions, exponential race
17. Markov chain with discrete time
18. Markov chain with discrete time - state classiffication
19. Markov chain with discrete time - stationarity
20. Markov chain with discrete time - parameters estimation
21 MCMC
22. Markov chain with continuous time
23. Markov chain with continuous time - Kolmogorov equations
24. Queuing theory, Little theorem
25. Queuing systems M/M/1 and M/M/m
26. Queuing systems M/G/infty
- Syllabus of tutorials:
-
1. Revision lesson: basics of probability
2. Random vectors, multivariate normal distribution
3. Entropy and coding theory
4. Entropy, mutual information
5. T-tests
6. Goodness of fit tests, independence test
7. Estimation od PDF and CDF
8. Random processes, Poisson
9. Markov chain with discrete time - stationarity
10. Markov chain with discrete time - state classiffication
11. Exponential race
12. Markov chain with continuous time
13. Queuing theory
- Study Objective:
-
The goal of the course is to introduce to the students advanced probabilistic and statistical methods used in information technology praxis.
- Study materials:
-
1. Cover, T. M. - Thomas, J. A. : Elements of Information Theory (2nd Edition). Wiley, 2006. ISBN 978-0-471-24195-9.
2. Durrett, R. : Essentials of Stochastic Processes. Springer, 1999. ISBN 978-0387988368.
3. Grimmett, G. - Stirzaker, D. : Probability and Random Processes (3rd Edition). Oxford University Press Inc., 2001. ISBN 978-0-19-857222-0.
- Note:
- Further information:
- https://courses.fit.cvut.cz/MI-SPI/
- No time-table has been prepared for this course
- The course is a part of the following study plans:
-
- Master specialization Computer Science, in Czech, 2018-2019 (compulsory course in the program)