Mathematics I.
Code | Completion | Credits | Range |
---|---|---|---|
2011067 | Z,ZK | 6 | 4P+4C |
- Garant předmětu:
- Gejza Dohnal
- Lecturer:
- Luděk Beneš, Tomáš Bodnár, Marta Čertíková, Gejza Dohnal, Lukáš Hájek, Jan Halama, Marta Hlavová, Jiří Holman, Jan Karel, Radka Keslerová, Petr Louda, Olga Majlingová, Tomáš Neustupa, Nikola Pajerová, Vladimír Prokop, Hynek Řezníček, Jan Valášek
- Tutor:
- Luděk Beneš, Tomáš Bodnár, Marta Čertíková, Gejza Dohnal, Lukáš Hájek, Jan Halama, Martin Hanek, Marta Hlavová, Jiří Holman, Vladimír Hric, Jan Karel, Radka Keslerová, Milana Kittlerová, Matěj Klíma, Petr Louda, Olga Majlingová, Josef Musil, Tomáš Neustupa, Nikola Pajerová, Vladimír Prokop, Hynek Řezníček, David Trdlička, Jan Valášek
- Supervisor:
- Department of Technical Mathematics
- Synopsis:
-
Introduction to linear algebra, analytic geometry of straight lines and planes in E3, calculus of functions of one variable
- Requirements:
- Syllabus of lectures:
-
Introduction to linear algebra - vectors, vector spaces, matrices, determinants, systems of linear equations. Analytic geometry in E3 - straight lines and planes. Calculus of functions of one variable - limit, continuity, derivative, extremes, behaviour of a function, indefinite integral, methods of integration, definite integral. Separable differential equations.
- Syllabus of tutorials:
-
Introduction to linear algebra - vectors, vector spaces, matrices, determinants, systems of linear equations. Analytic geometry in E3 - straight lines and planes. Calculus of functions of one variable - limit, continuity, derivative, extremes, behaviour of a function, indefinite integral, methods of integration, definite integral. Separable differential equations.
- Study Objective:
-
Linear algebra: Vector spaces, Matrices and determinants, Systems of linear algebraic equations, Linear transformations of Euclidean spaces. Eigenvalues, eigevectors of square matrices, Differential calculus: Sequences of real numbers and their limits, Function of one real variable - limits, continuity, derivatives, Higher order derivatives
- Study materials:
-
Neustupa, J.: Mathematics I, CTU Publishing House, Prague, 1996, Finney, R. L., Thomas, G.B.: Calculus, Addison-Wesley, New York, Ontario, Sydney, 1994
- Note:
- Time-table for winter semester 2022/2023:
-
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon Tue Wed Thu Fri - Time-table for summer semester 2022/2023:
- Time-table is not available yet
- The course is a part of the following study plans:
-
- B TZSI 2021 - prezenční (compulsory course in the program)