Logo ČVUT
CZECH TECHNICAL UNIVERSITY IN PRAGUE
STUDY PLANS
2024/2025

Architecture of radio receivers and transmitters

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
B2M37ART Z,ZK 6 2P+2L Czech
Relations:
In order to register for the course B2M37ART, the student must have registered for the required number of courses in the group BEZBM no later than in the same semester.
Course guarantor:
Pavel Kovář
Lecturer:
Josef Dobeš, Pavel Kovář
Tutor:
Josef Dobeš, Pavel Kovář, Pavel Puričer, Karel Ulovec
Supervisor:
Department of Radioelectronics
Synopsis:

The subject deals with the architecture of the radio receivers and transmitters and software radio. The student s familiarize with the design and the modern methods of optimization of the radio receivers and transmitters' functional blocks and with the phenomena related with frequency conversion, noise sources and noise analyses. They learn conceptual radio receiver and transmitter design, including the level and frequency plans and their optimization. The course also deals with the digital signal processing blocks of the modern radio receivers and their practical implementation.

Requirements:

Mathematics, theory of signals and systems, analog and digital circuits and basic blocks (bachelor level)

Syllabus of lectures:

1. Parameters of the radio receivers and transmitters (selectivity, sensitivity, dynamic range, spurious response, BER, intermodulation, cross-modulation, parasitic radiation, radiation mask, non-harmonics components, C/N, S/N)

2. Narrow band and wideband radio frequency amplifiers, dynamic range, dynamic distortion, slew rate, noise property, of the radio frequency amplifiers, RF power amplifiers (low, medium levels), distributed amplifiers, their limiting factors.

3. Realization of the RF and IF filters, basic parameters (insertion loss, conditions of non-distortion processing), quartz resonators, monolithic and discrete quartz filters, ceramic filters, helical filters, resonator and transversal SAW filters.

4. Parameters of frequency generators (frequency stability, harmonic and non-harmonics spurs, aging, oscillator tuning, transient response). Frequency synthesizer, negative differential resistance oscillator, feedback oscillators, quartz oscillators and oscillators with distributive gain.

5. Frequency conversion, mixers, image rejection mixers, double and multiple balanced mixers, intermodulation, spurious reception, methods of analysis and optimization of the mixing products.

6. Noise in receiver and transmitter: internal and external noise, noise classification according to their physical cause. Equivalent noise temperature and noise figure of the cascade. Methods of analyzing and optimization of the noise parameters.

7. Architecture of the radio receivers and transmitters - tuned radio receiver, super regenerative receiver, single and multiple conversion super heterodyne receiver, direct conversion receiver, low-IF receiver, receiver with wideband IF amplifier.

8. Radio receiver frequency and level plan and its optimization, reciprocal mixing, mixing table, spurious response, spurs.

9. Analog to digital conversion of the received signal (IF, RF and baseband sampling, jitter). Receivers and transmitters auxiliary circuits (AGC, AFC, antenna tuner, squelch, PSW meter).

10. Radio transmitter architecture, special power amplifier components (semiconductor, vacuum) used in final stages of the transmitters. Power amplifier classes.

11. Modulation on RF and IF, modulator types, quadrature modulator, impulse modulator, FM modulator. Linearization. Special optimization methods for power amplifiers. Special measurement methods for transmitters.

12. Digital signal processing blocks before and after modulator and demodulator. DUC, DDC, realization.

13. Software defined radio, cognitive radio. Basic concept, architectures, application in communication, measurement and mobile technology.

14. Digital signal processors for software radio, parallel digital signal processing, digital IF stage, direct digital synthesis, FPGA implementation.

Syllabus of tutorials:

The seminars are focused on the laboratory measurement of the presented topics. The students will prepare measurement reports. In the frame of the seminars, students will solve an individual task that will be presented at the end of the school term.

1. Laboratory introduction, safety rules

2. Laboratory measurement of the radio receiver sensitivity, BER, PER, selectivity, spurious response, spurious radiation

3. Laboratory measurement of the radio transmitter spectra, harmonic and non-harmonic response

4. Laboratory measurement of the transfer function of the discrete quartz filter, ceramic and SAW filter.

5. Design and measurement of the synthesizer

6. Laboratory measurement of the mixing table, conversion losses, gates isolation of the double balanced diodes frequency mixer

7. Noise figure measurement

8. Laboratory measurement of the intermodulation immunity of the radio receiver

9. Conceptual design of the radio receiver

10. Processing of the VKV FM radio by the SDR receiver

11. Conceptual design of the radio receiver, specification of the individual task

12. Consultation of the individual task

13. Presentation of the individual task solution

14. Supplementary laboratory measurement

Study Objective:
Study materials:

Dobeš, J. Žalud, V.: Moderní radiotechnika, BEN, 2006, ISBN 80-7300-132-2.

Rohde, U.L.: Communications receivers DSP, software radios, and design, McGraw-Hill 2001, ISBN: 0-

07-136121-9.

Vendelin, G.D.; Pavio, A.M.; Rohde, U.L.: Microwave Circuit Design Using Linear and Nonlinear Techniques.

Wiley-Interscience, 2005.

Misra, D.K: Radio-Frequency and Microwave Communication Circuits. John Wiley & Sons, Inc., 2001.

Note:
Further information:
https://moodle.fel.cvut.cz/courses/B2M37ART
Time-table for winter semester 2024/2025:
06:00–08:0008:00–10:0010:00–12:0012:00–14:0014:00–16:0016:00–18:0018:00–20:0020:00–22:0022:00–24:00
Mon
Tue
roomT2:C3-438
Dobeš J.
Kovář P.

11:00–12:30
(lecture parallel1)
Dejvice
roomT2:C3-436
Puričer P.
Ulovec K.

12:45–14:15
(lecture parallel1)
Dejvice
Wed
Thu
Fri
Time-table for summer semester 2024/2025:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2025-01-22
For updated information see http://bilakniha.cvut.cz/en/predmet4637906.html