Applied Quantum Chromodynamics at High Energies

Login to KOS for course enrollment Display time-table
Code Completion Credits Range
Garant předmětu:
Ján Nemčík
Ján Nemčík
Department of Physics

This lecture is oriented to provide some basic applications of quantum chromodynamics that corresponds to understanding of the dynamics of processes in particle physics at high energies on proton and nuclear targets that are currently measured by experiments at RHIC and LHC colliders. Complementary informations to lectures of Basics of quantum chromodynamics will be provided.


Knowledge of quantum field theory and basics of quantum chromodynamics.

Syllabus of lectures:

1. Basics of theory of strong interactions

- QCD Lagrangian and symmetries,

- QCD versus QED,

- asymptotic freedom,

- chiral symmetry breaking,

- quark confinement,

- evidence for colored quarks

2. Color transparency

- quasi-elastic scattering on nuclei,

- diffractive electroproduction of vector mesons

3. Hadronization of colored charges.

4. DIS

- Bjorken scaling and parton model,

- scaling violation and DGLAP evolution equation,

- factorization theorem,

- BFKL formalism,

- GLR-MQ evolution equation and saturation

5. Color dipole formalism - DIS at small x:

- KST vs GBW model,

- GBW model with DGLAP equation and dipole evolution

6. Production of Drell-Yan pairs and direct photons

- parton description vs. color dipole approach

7. Diffraction

- diffraction in non-abelian theories,

- quantum mechanics of diffraction,

- diffractive DIS,

- diffractive Drell-Yan,

- diffractive Higgs boson production

8. Quark and gluon shadowing, Cronin effect and nuclear broadening

9. Quenching of high-pT hadrons: Energy loss vs Color transparency

10. Energy conservation in high-pT nuclear reactions

11. Production of heavy quarks as an alternative way for study of properties of the medium created after heavy ion collisions

Syllabus of tutorials:
Study Objective:

To provide a deeper understanding of quantum chromodynamics with respect mainly to recent requirements to analyze and interpret the data measured by experiments in CERN and BNL. This lecture is focused mainly for students of doctoral studies.


Methods used in quantum chromodynamics


Using of above mentioned methods on certain problems in quantum chromodynamics

Study materials:

Basic references:

1. H. Georgi: Lie Algebras in Particle Physics; Perseus Books, 1999.

2. J. D. Bjorken, S. D. Drell: Relativistic Quantum Theory; McGraw-Hill Book Co., 1965.

3. M. E. Peskin, D. Schroeder: An Introduction To Quantum Field Theory; Westview Press, 1992.

4. F. Halzen, A. D. Martin: Quarks and Leptons; John Wiley and sons, 1984.

5. W. Greiner, S. Schramm, E. Stein: Quantum Chromodynamics; Springer, 1989.

6. R. Vogt: Ultrarelativistic Heavy-Ion Collisions; Elsevier Science, 2007.

7. S. Sarkar, H. Satz, B. Sinha: The Physics of the Quark-Gluon Plasma; Springer, 2010.

8. Xin-Nian Wang: Systematic study of high p T hadron spectra in pp, pA, and AA collisions at ultrarelativistic energies; Phys.Rev. C61 064910 (2000).

Recommended references:

1. B. Z. Kopeliovich, J. Nemchik: Challenges of high-pT processes on nuclei; J.Phys G38, 043101 (2011).

2. B. Z. Kopeliovich, J. Nemchik, et al.: Color transparency versus quantum coherence in electroproduction of vector mesons off nuclei; Phys.Rev. C65, 035201 (2002).

3. B. Z.Kopeliovich, J. Nemchik, et al.: Nuclear hadronization: Within or without?; Nucl.Phys. A740, 211 (2004).

4. B. Z.Kopeliovich, A. Schaefer, A. V. Tarasov: Nonperturbative effects in gluon radiation and photoproduction of quark pairs; Phys.Rev. C62, 054022 (2000);

Bremsstrahlung of a quark propagating through a nucleus; Phys.Rev. C59, 1609 (1999).

5. B. Z. Kopeliovich, J. Nemchik et al.: Energy conservation in high-pT nuclear reactions; Int.J.Mod.Phys. E23, 1430006 (2004).

6. J. L.Albacete, et al.: Predicions for p+Pb collisions at sqrt{s} = 5 TeV; Int.J.Mod.Phys. E22, 1330007 (2013).

7. B. Z. Kopeliovich, J. Nemchik, et al.: Quenching of high-pT hadrons: Energy loss vs color transparency; Phys.Rev. C86, 054904 (2012).

8. B. Z. Kopeliovich, A. Rezaeian: Applied high energy QCD; Int.J.Mod.Phys. E18, 1629 (2009);

Applied QCD; 4th CERN - CLAF School of High-Energy Physics, Vina del Mar, Chile, 18 Feb - 3 Mar 2007, pp.51-104 (CERN-2008-004).

9. B.Z. Kopeliovich, J. Nemchik, I.K. Potashnikova, I. Schmidt: Novel scenario for production of heavy flavored mesons in heavy ion collisions; arXiv:1701.07121 [hep-ph], EPJ Web Conf. 164, 01018 (2017).

10. V.P. Goncalves et al.: Drell-Yan process in pA

collisions: Path-integral treatment of coherence effects;

Phys.Rev. D94, 114009 (2016).

11. B.Z. Kopeliovich, J. Nemchik, I.K. Potashnikova, I. Schmidt: Gluon Shadowing in DIS off Nuclei; J.Phys. G35,115010 (2008).

12. B.Z. Kopeliovich, J. Nemchik, I. Schmidt:

Production of Polarized Vector Mesons off Nuclei; Phys.Rev. C76, 025210 (2007).

Color Transparency at Low Energies: Predictions for JLAB; Phys.Rev. C76, 015205 (2007).

13. B.Z. Kopeliovich, J. Nemchik: Time Evolution of Jets and Perturbative Color Neutralization; Nucl.Phys. A782, 224 (2007).

14. B.Z. Kopeliovich et al.: Breakdown of QCD factorization at large Feynman x; Phys.Rev. C72, 054606 (2005).

15. J. Nemchik: Nuclear shadowing in DIS: Numerical solution of evolution equation for the green function; Phys.Rev. C68, 035206 (2003).

16. B.Z. Kopeliovich et al.: Cronin effect in hadron production off nuclei; Phys.Rev.Lett. 88, 232303 (2002).

Time-table for winter semester 2023/2024:
Time-table is not available yet
Time-table for summer semester 2023/2024:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2024-07-18
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet4584706.html