UPOZORNĚNÍ: Jsou dostupné studijní plány pro následující akademický rok.

Plasma Theory 2

Login to KOS for course enrollment Display time-table
Code Completion Credits Range Language
02TPLA2 Z,ZK 5 3+1 Czech
Garant předmětu:
Jan Mlynář
Petr Kulhánek
Petr Kulhánek
Department of Physics

First part of the lecture will be devoted to plasma waves and instabilities. General recipes of obtaining the disperse relation will be discussed, especially linearization and Fourier transform. Magnetoacoustic waves, electromagnetic waves, and basic instabilities will be treated in detail. The second part of the lecture will be devoted to statistical plasma approach, e. g. transport phenomena, and microinstabilities such as Landau damping.


Knowledge of basic course of physics

02TEF1,2 Theoretical physics 1,2

02TPLA1 Plasma Theory I

Syllabus of lectures:

1. Wave phenomena basics. Wave frequency and wave vector. Disperse relation, linearization, Fourier transform.

2. Basic techniques leading to disperse relation, phase and group velocities.

3. Plasma waves and oscillations. Disperse relation. Plasma oscillations of electrons and ions. Plasma waves. Phenomena influencing plasma waves.

4. Low frequency waves. Magnetoacoustic complex (Alfven, fast and slow mode). Magnetoacoustic waveforms. Alfven waves.

5. High frequency waves: X wave, O wave, R wave, L wave. Whistlers. Cut-off and resonant frequencies.

6. Other examples: HF electromagnetic wave permittivity tensor, Faraday rotation, CMA diagram;

7. MHD plasma instabilities. Bunemann, Rayleigh-Taylor, Kelvin-Helmholtz, diocotron instability.;

8. Plasma pinch instabilities and their modes. Boundary and interface conditions

9. Nonequilibrium statistics, Boltzmann equation and its variants (Fokker-Planck equation, Landau equation, Krook equation, Vlasov equation);

10. Boltzmann collision term, transport equation, momenta, relation to fluid models;

11. Transport phenomena. Diffusion, heat transfer, entropy flux, entropy wave, Onsager reciprocity relations;

12. First and second Rosenbluth potential, relaxation times, collisional frequency calculation, Chandrasekhar function;

13. Runaway electrons, Dreicer field, ultrarelativistic particles behavior, radiation, pair creation;

14. Landau damping, Bernstein modes, laser wake-field accelerators.

Syllabus of tutorials:

corresponds withe the outline of the lectura

Study Objective:


Study materials:

Key references:

[1] T.H.Stix:WavesinPlasmas;Springer,2006

Recommended references:

[2] T. J. M. Boyd, J. J. Sanderson: The Physics of Plasmas, Cambridge University Press, 2003

Further information:
Time-table for winter semester 2022/2023:
Time-table is not available yet
Time-table for summer semester 2022/2023:
Time-table is not available yet
The course is a part of the following study plans:
Data valid to 2023-05-27
Aktualizace výše uvedených informací naleznete na adrese https://bilakniha.cvut.cz/en/predmet24890005.html